
SYZYGY – A Framework for Scalable Cross-Module IPO

Sungdo Moon, Xinliang D. Li, Robert Hundt, Dhruva R. Chakrabarti,
Luis A. Lozano, Uma Srinivasan, and Shin-Ming Liu

Java, Compilers, and Tools Lab, Hewlett-Packard Company

11000 Wolfe Rd, Cupertino, CA 95014
{sungdomo,davidxl,rhundt,dhruva,lozano,uma,shin}@cup.hp.com

Abstract

Performing analysis across module boundaries
for an entire program is important for exploiting
several runtime performance opportunities. However,
due to scalability problems in existing full-program
analysis frameworks, such performance opportunities
are only realized by paying tremendous compile-time
costs. Alternative solutions, such as partial
compilations or user assertions, are complicated or
unsafe and as a result, not many commercial
applications are compiled today with cross-module
optimizations.

This paper presents SYZYGY, a practical
framework for performing efficient, scalable,
interprocedural optimizations. The framework is
implemented in the HP-UX Itanium® compilers and
we have successfully compiled many very large
applications consisting of millions of lines of code. We
achieved performance improvements of up to 40%
over optimization level two and compilation time
improvements in the order of 100% and more
compared to a previous approach.

1. Introduction

Interprocedural optimizations (IPO) have been
known to provide substantial runtime performance
benefits. To name a few, cross-module procedure
inlining, indirect call promotion, dead global variable
elimination, and code and data layout optimizations
are proven methods for improving performance of an
application. For many of such optimizations, like dead
function and global variable elimination, whole-
program analysis is a must for ensuring the correctness
of program execution. Others, such as those benefiting
from interprocedural pointer alias analysis
information, are more effective when performed in

whole-program mode. Yet other transformations, such
as procedure inlining, are able to yield maximal
potential performance as the scope is enlarged to
include the entire application.

Nevertheless, IPO has not seen wide-scale uses
amongst application developers and vendors, as long
compilation time and huge memory consumption
present significant usability hurdles to the deployment
of whole program optimization. In a naive
implementation, the working set for interprocedural
optimizations grows in a super-linear fashion with the
size of application. The sheer size and the amount of
swapping it induces put insurmountable pressure on
the virtual memory system. We have also observed
that such implementation very quickly reaches its
limits in file set handling when thrown at large
applications.

One of the existing techniques for addressing
these problems is partial IPO, i.e., performing
interprocedural optimizations on a subset of the files
constituting an application. This technique is more of a
workaround than a viable solution because it cannot
apply transformations that rely on whole-program
analysis. In addition, it requires guidance either
directly from the application developer or from an
extra profiling pass to determine the subset of the
application files that are important. Another common
technique is to use user assertion options, such as
telling the compiler that the addresses of global
variables are not taken anywhere in entire application.
In General, the use of such assertions is unsafe and
requires intimate knowledge of the details of the
application. They also do not prove to be adaptive to
changes in the application over time. Other assertions
like linker options for binding or specifying the link
order require significant user intervention to exploit
optimization opportunities and are once again not
adaptive to changes in the application. Some
compilers use elaborate memory management schemes

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

to manage large working sets such as offloading
information when a certain memory usage threshold is
reached [3]. However, they typically run into a
problem because of not knowing how large a working
set should be allowed to grow. By the time the
threshold is reached it is usually too late and the
offloading itself becomes a bottleneck.

In this paper, we describe SYZYGY, a scalable
framework for performing IPO that provides a viable
solution to developers and vendors in terms of
usability and runtime performance of applications. We
informally define scalability of an IPO compilation
process in terms of achieved compilation time at a
lower optimization level (O2) and in terms of utilized
disk space compared to a compilation producing
debug information (-g). In particular, for our purpose,
an IPO compilation is considered to scale if the total
compilation time overhead compared to an O2
compilation and the required disk space compared to a
debug compilation do not exceed the a factor of 3.

We achieve scalability through various means,
which will be explained in greater detail in the
remainder of this paper. Firstly, we push as much
functionality as possible into the parallelizable front-
end and back-end parts of the compiler. Secondly, we
generally try to split optimization phases into analysis
and transformation phases, minimizing the size of
additional in-memory or persistent data necessary for
communication between the phases. Thirdly, the
number of read and write operations on intermediate
files is kept to a minimum during the compilation
process and lastly, the intermediate file format has
been designed carefully to minimize disk size and to
optimize access times.

The rest of this paper is organized as follows.
Section 2 introduces our view of an ideal IPO
compilation model. Section 3 provides a description of
the SYZYGY IPO framework and several
implementation issues, as well as IELF, our persistent
intermediate representation (IR). In Section 4,
compilation time and performance measurements are
presented. Section 5 addresses related work, followed
by the conclusions.

2. IPO compilation model

There are many, often conflicting, objectives to
accomplish during the compilation process, such as
correctness, high performance, reasonable compilation
time, debuggability, and so on. Putting aside the
correctness, the indispensable goal of the compilation,
optimizing compilers usually put more emphasis on
achieving higher performance with the expense of
longer compilation time. In case of IPO compilation,
however, especially for large applications with

thousand of files and millions of lines of codes, an
excessive compilation time can be a major obstacle for
its wider acceptance.

In designing the SYZYGY IPO framework, the
major emphasis has been put on achieving scalable
compilation time for large applications, while
preserving analysis precision and optimization
opportunities as much as possible. The incremental
IPO recompilation model [5], where the compilation is
confined to the portions of the previous compilation
that are invalidated by the source code changes, is one
solution during recompilation of large applications in
the event of small source code changes. While it is an
attractive partial solution and possibly a future
extension of our framework, in this paper we focus on
the compilation of whole programs.

The proposed IPO compilation model splits a
standard compilation process into three distinct phases
as illustrated in Figure 1: front-end (FE),
interprocedural analysis engine (IPA), and back-end
(BE). Both front-end and back-end operate on a single
module at a time. The interprocedural analysis engine
is the only place where whole program is seen and the
interprocedural information is computed. While FE
and BE can be executed in parallel at the module
granularity taking advantage of multiple CPUs
available within a machine or across a pool of
networked machines, IPA is sequential in nature and
thus become a major bottleneck in overall compilation
time. As a result, it is very important to minimize the
time taken during IPA to achieve scalable overall IPO
compilation.

In par with the compilation model, all
interprocedural optimizations are also divided into
three phases: summary collection, interprocedural
analysis, and interprocedural optimization.

FE

FE

FE

IPA

BE

BE

BE

... ...

Figure 1: Overview of IPO compilation model.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

2.1 Summary collection (FE)

FE collects the module-level and procedure-level
summaries that are needed for interprocedural
analysis. The summary for a given optimization is a
minimal subset of program representation that is
essential in computing interprocedural information to
determine the legality and the profitability of an
optimization. Certain summaries are shared amongst
several independent interprocedural analyses. Before
collecting summaries, FE first applies a series of
simple transformations, such as constant folding, IR
canonicalization, algebraic expression simplification,
etc., to present the IR to subsequent phases in a
simplified and canonical form. Then standard scalar
optimizations are performed to assist the collection of
much more compact and precise summary
information.

The use of summaries for interprocedural analyses
has several benefits. Firstly, it significantly reduces the
working set. Secondly, summaries for an individual
module can be computed independently in parallel
with the summary computation for other modules.
Also in case of recompilation, the summaries for
unmodified modules can be reused without
recomputing them. Lastly, the effect of certain
interprocedural optimizations can be easily reflected
on the summaries without modifying the IR.
Therefore, well-designed summaries are crucial for
IPA to efficiently compute effective interprocedural
information.

2.2 Interprocedural analysis (IPA)

IPA processes a set of modules that constitute the
whole compilation and builds the global symbol table
and the call graph after performing name resolution
and type unification. Summaries gathered by FE are
associated with the corresponding call graph nodes or
edges. Then a series of analyses are performed
interprocedurally based on the summaries on top of
the call graph and the local/global symbol tables.
Interprocedural analysis results are gathered in an
appropriate form and passed to BE either to direct
interprocedural transformations or to allow further
local optimizations with refined information.

In non-IPO compilation, optimizations have to
conservatively assume the behavior of non-visible
parts of a program. The purpose of most
interprocedural analyses is to collect the behavior of
whole program and assist in improving the quality of
local optimizations. For instance, the results of
interprocedural constant propagation can be used by
local constant propagation or other local optimizations

to make safe assumption on the possible values of a
formal argument.

There are several interprocedural optimizations
such as procedure inlining, procedure cloning, and
indirect call promotion that need contexts from other
modules in order to perform the required
transformations. For example, inlining may need the
callee procedure body from another module and
indirect call promotion may need the target procedure
symbol. Usually these kinds of transformations are
performed during IPA, but can be deferred to BE to
fully take advantage of BE’s parallelism. This can be
accomplished either by copying the required contexts
or through the central program database shared by
multiple BEs.

In this ideal IPO model, IPA does not directly
reference or modify the code representation part of the
IR; only the summaries are accessed. Although the
actual code transformations are deferred, it is
important for an individual analysis phase to update
summaries reflecting what will happen later so that the
following analyses can be performed with valid
summaries. When transformations are applied,
existing summaries become either invalid or less
precise (conservative). The invalidated summaries
should be appropriately updated for the correctness of
subsequent analyses, while less precise (conservative)
summaries can be safely used without an update.

A cross-module interprocedural compilation
uncovers unique compilation time reduction
opportunities over a normal compilation, that is, to
remove redundant or unused compilation units, such
as duplicate COMDAT1 sections and dead functions.
Interestingly, it is our observation that larger
applications tend to have many of such opportunities,
helping IPO to become a more affordable option.

2.3 Interprocedural optimization (BE)

BE consumes an individual module annotated
with interprocedural analysis results computed by IPA
and performs optimizations and code generation. The
scope of optimizations performed within BE is either
intra-module/inter-procedural or intra-procedural
level. In case of cross-module/inter-procedural
transformations, IPA already decided what to do and
prepared IR with enough contexts from other modules
such that the original cross-module transformations
can be performed as intra-module transformations.

1 COMDAT is an ELF section that can be defined by more than one
object file. It is typically used for the compile-time template
instantiation.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

3. SYZYGY IPO framework

This section presents a detailed description of the
SYZYGY IPO framework which is implemented in
the HP C/C++/Fortran compilers for HP-UX Itanium®
systems. First we describe IELF files, a persistent
binary intermediate representation used to
communicate between FE, IPA, and BE.

3.1 Intermediate representation (IELF)

An IELF file contains a language independent
intermediate representation (IR) of a compilation unit.
IELF files are regular 32/64-bit ELF [12] files
containing an ELF header, a symbol table, a string
table, a section table, as well as several sections for
binary representation of the internal IR representing
the compiled program.

In the memory representation, the IR is
maintained in memory arenas (blocks of memory
whose allocation and de-allocation are controlled by
the compiler; similar to [11]). All the references to
arena objects are done through unique identifiers (ID)
instead of pointers. Each arena maintains an associated
ID array which contains pointers to owned objects; the
object’s ID is the position of the pointer to the object
in the ID array associated with its owning arena. In
IELF files, ID arrays are stored in a separate ELF
section as arrays of arena offsets. Another ELF section
contains mappings for fast finding of an arena’s ID
array.

The usage of IDs for cross-referencing between
arena objects enables a consistent in-memory and out-
of-memory representation of the IR. As a result, when
an IELF file is read in, persistent arenas can be
directly mmap’ed into the core memory. All references
to objects in persistent arenas remain valid when they
are mapped from or unmapped to the IELF file. Only
ID arrays need to be handled appropriately to achieve
persistency. The conversion between pointers and
arena offsets in ID arrays is performed when IELF
files are read or written. The conversion of ID arrays is
done in a lazy fashion whenever possible. For
frequently-used arenas, such as the global symbol
table, their ID arrays are always converted during
IELF read/write. The ID arrays of other arenas are
converted to array of pointers when first referenced
and converted back to array of arena offsets on write.
The conversion of an ID array is extremely fast and
only requires one pass over it.

During various compilation phases, a large
number of IR objects can be created and deleted
resulting in fragmentation in the arenas, which in turn
can result in poor locality. This can be severe
particularly for the arenas of variable length objects

where reusing of deleted space is difficult. Therefore,
during IELF writing, the live objects within an arena
are compacted together.

Typically, the size of an IELF file is on average
five times larger than its real object file, but for certain
pathological cases we observed overheads of 700
times compared to the real object file size. This can be
easily understood. For example, given a source file
containing a very short function with a reference to a
field of a very large structure, its real object file would
contain only a few instructions, such as a load of the
structure address, a load of an field offset, and then the
access itself. However, the IR has to represent the
whole structure with field and type information.
Therefore, it seems fairer to compare the size of an
IELF file with that of a corresponding real object file
containing debug information, where we experienced
average overhead of slightly below 3 times.

Since IELF files contain binary data, care must be
taken to guarantee the compatibility during the
evolution of the compiler. We designed several ways
to extend the content of IELF files in an upward
compatible fashion so that newer compilers can work
with IELF files generated from an older compiler. For
example, an IELF file can contain arbitrary number of
annotations, blocks of arbitrary binary data, and an
object’s ID can be used as an index into them. The
compiler has to gracefully react depending on the
existence of a certain annotation.

In summary, in designing the IELF representation,
we made the classic engineering tradeoff and favored
speed over size. Due to this design choice, reading of
IELF files became extremely fast. Writing of IELF
files turned out to be slower, and depending on
machine characteristics, we experienced factors for
writing over reading in the range from 2 to 10.
Therefore, avoiding writing of IELF files during
compilation is very important.

3.2. IPO framework

An overview of the SYZYGY compilation
framework for cross-module IPO is illustrated in
Figure 2. It divides a standard build process in four
distinct phases: front-end, linker, ipa, and back-end.

The front-end (FE) takes input source files and
generates output IELF files after a series of simple
optimizations and summary gathering phases. The
summary gathering and the generation of IELF files
are controlled by either specifying “+O4”, or
combining a lower optimization level with the flag “-
ipo”. In cross-module IPO, IELF files are faked as
real object files so that an existing build process can
remain intact.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

At link time, the linker (ld) resolves all
dependencies and determines the list of object files
required for the final build. The HP-UX linker has a
mechanism for automatic dynamic extension and
allows loading of so-called plugins, shared libraries
that provides certain functions that follow a specific
naming convention. These functions are searched and
called by the linker, passing arrays of function pointers
back and forth to allow effective data exchange
between the linker and the plugins. The IPO specific
plugin claims front-end generated IELF files,
declaring to the linker its intention to work with them.
It assembles a list of the IELF files, extracts individual
IELF files out of IELF archives if needed, and gathers
linkage information provided by the linker. After that,
it finally forks and executes u2comp2.

The IPA process u2comp accepts as input the
IELF files and the linker-feedback files, performs
cross-module interprocedural analyses and
transformations, and generates another set of IELF
files that will be consumed by back-ends. In addition,
u2comp generates a “makefile” that builds final
targets (real objects files) for all the IELF files by
invoking the back-end (BE). Before u2comp finishes,
it invokes make in parallel mode on the generated
makefile. The make process replaces u2comp, which
is no longer needed.

The default number of back-end processes that
make creates is set to the number of processors on the
machine and can be user specified. Multiple flavors of
make are supported, such as HP-UX make, GNU
gmake [8], and IBM Rational clearmake [13]. The
clearmake offers the capability of distributing
builds over multiple machines. This "farming out" of

2 “u2comp” is a historical name for the HP-UX IPA executable.

back-ends together with a proper build environment
infrastructure can lead to a dramatic reduction of the
time spent in back-end optimizations and code
generation.

After all back-ends finish, the control goes back
to the linker, which then links the back-end generated
real objects files with needed libraries to create the
final executable.

3.3. Interprocedural optimizations

The ideal model presented in Section 2 advocates
an IPO model where the interprocedural
transformations are performed by BE using the
interprocedural analysis results produced by IPA. With
separate analysis and transformation, this can be easily
accomplished for most interprocedural optimizations.
As explained in the previous section, for some
interprocedural transformations such as procedure
inlining, IPA needs extra preparation work in order to
defer them to BE. In the current implementation, we
chose to perform procedure inlining in the u2comp
process.

Procedure inlining can dramatically change the
structure of a program, so it is challenging to
appropriately update pre-inline summaries. For this
reason, procedure inlining is performed last in the IPA
phase ordering. Due to this decision, all the other
interprocedural transformations are also performed
during IPA just before procedure inlining. The
program structure changes by inline transformation are
too severe to apply transformations determined by the
analyses performed before procedure inlining.

The u2comp phase starts with building global
data structures such as global symbol table. We first
remove redundant COMDAT sections and dead

Figure 2: SYZYGY IPO framework.

.c
ielf

ld plugin IPA

ielf BE
…
…

IELF list

.cc ielf

.f ielf

. . .

. . .

ielf BE

ielf BE

. . .

. . .

. . .

a.out

front-end linker u2comp back-end

FE

FE

FE

. . .

.o

.o

.o

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

functions to avoid unnecessary compilations spent on
them during u2comp and back-end. After the
duplicate COMDAT elimination, impacted modules
are written out. Here, we could avoid writing of IELF
files by using the same techniques described below.
However, we chose to do that as the size of IELF files
for C++ programs are greatly reduced after COMDAT
elimination which helps reducing file I/O overhead for
subsequent phases. Dead functions are identified right
after the call graph construction and marked in the
global symbol table, but the actual elimination is
performed later, together with other transformations,
to avoid IELF file writing. No summaries are impacted
by these optimizations, except for the ones associated
with removed objects which will be removed or
ignored. Note that subsequent optimizations such as
procedure inlining can result in more dead functions.

After that, several well-known interprocedural
analyses follow. The analysis results can either be kept
in memory until the next IELF file write or be written
out to separate files depending on the amount of
information. For the analyses that derive
transformations, we keep lists of transformations to be
performed and apply them together just before the
procedure inlining phase. The transformations are
applied module by module and the resulting IELF files
are written out. Before the transformation phase, the
effects of a certain transformation need to be visible to
the following analyses by updating either summaries
or local symbol tables, which demands writing of
IELF files. In order to avoid continuous rewriting, we
maintain patch lists and apply them to the summaries
and the IR whenever the corresponding IELF file is
read-in. Although patching is done multiple times, this
process is extremely fast and introduces negligible
overhead.

In summary, in our framework, all interprocedural
optimizations excluding procedure inlining are
performed with a single rewriting of IELF files (twice
if duplicate COMDAT sections exist). This is
accomplished by separating analysis and
transformation phases, performing analyses on top of
summaries, patching the IR on reads instead of
rewrites, and applying a set of transformations in
group at the end.

3.4 Cross-module procedure inlining

Procedure inlining [7] is a common optimization
employed in compilers in order to reduce call
overhead and enable optimizations that are otherwise
not performed. Given a call-site from a caller routine
to a callee routine, this technique replaces the call-site
with a copy of the code for the callee. The elimination
of the call-overhead directly improves performance

(barring any potential I-cache penalties due to
increased routine size). Another key benefit of
procedure inlining is to increase the scope seen by the
scalar/loop optimizer and instruction scheduler. While
run-time performance improves in general, there are
compile-time challenges when procedure inlining is
applied to thousands of files.

A traditional approach such as [2] works on the
raw program representation during the inlining phase.
While this works pretty well for small programs, the
memory consumption of the compiler easily hits the
system limit for larger applications. The method
presented in [3] solves this problem by offloading data
structures onto disk to free up process memory. While
this scheme allows the memory consumption of a
compiler to stay within system limits, the compilation
time greatly suffers due to loading, offloading, and
thrashing.

Our framework solves this problem by having the
analysis phase operate solely on program summary
information. The IR is not opened at all during the
analysis phase. A minimum set of summary
information is maintained in the persistent
representation of the program. At the start of the
inlining phase, a top-level driver collects these
persistent summaries and creates consolidated in-core
summaries suitable for the analysis. The inlining
heuristics employed in the analysis phase operate on
these in-core summaries.

In our framework, the inlining transformation
phase attempts to keep a limit on the number of open
files. The main motivation is to minimize the number
of reads and writes of the IELF files. An ordering
among the inlinable call-sites is dynamically generated
during the transformation process in order to achieve
this goal [6]. A limit is imposed on the number of
open IELF files and the amount of memory they can
consume. Once this limit is reached, IELF files are
closed as necessary to accommodate opens of other
IELF files.

The approach presented in [2] performs several
iterations of procedure inlining and scalar
optimizations in order to accurately capture the impact
of post-inline optimizations to assist subsequent
inlining decision. While this works pretty well for
achieving run-time performance, it is usually
disastrous for compilation time while compiling large
applications. Our framework uses a single analysis and
a single transformation phase. In order to anticipate
the effects of a certain inline instance, the summaries
are updated after every inline decision. This leads to a
significant improvement in compilation time as shown
in the next section. We believe that careful update of
the summaries can capture much of the effects of

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

subsequent optimizations and it is not necessary to
have a multi-pass inlining scheme.

4. Experimental results

Our experimental results are obtained on an HP
server rx5670 with four 900 MHz Intel® Itanium® 2
processors, 8GB main memory, 1.5 MB L3 cache. We
use the SPEC2000 integer benchmark suite for
evaluating and comparing the compile-time and run-
time behavior of our compiler (Figure 3 and Figure 4).
We use a very large commercial application to analyze
scalability parameters, such as memory footprint and
CPU load (Figure 5).

The following three configurations are compared:

• O2: This is the default optimization level without
any interprocedural optimization. All optimizations
at this level are performed at the routine-level.

• SYZYGY: This setup corresponds to the highest
optimization level, O4, which invokes
interprocedural optimizations based on the
SYZYGY IPO framework in addition to O2-level
optimizations. The back-end phase is parallelized to
4 processes, while no front-end parallelization is
used matching with O2 behavior. This setup also
invokes the high-level loop optimizer which has
minimal impact on the performance of our
benchmark applications.

• HLO: This setup uses the previous interprocedural
optimizer in the HP-UX compilers based on the
framework presented in [2,3]. The set of
optimizations performed in this setup is equivalent
to the SYZYGY setup.

The compilation time comparisons illustrated in
Figure 3 highlight the followings:

• SYZYGY vs. O2: The compilation time overhead
of O4 over O2 is roughly less than two, which is a
very positive result. We find this overhead factor
confirmed in many large commercial and technical
applications on machines with two or more
processors. Note that large portions of O4
compilation time overhead are due to the
compilation time increase in back-end
optimizations due to increased routine sizes after
aggressive procedure inlining. Also note that for
some applications having a serial build process, the
effects of the back-end parallelization were
significant enough to make the O4 compilation
faster than the O2 compilation (for example,
176.gcc and 252.eon). 252.eon is a good example
for illustrating the unique advantages of IPO;
duplicate COMDAT elimination greatly reduces
back-end optimization time.

• SYZYGY vs. HLO: The new IPO model achieves
a very large compilation time speedup over the
previous model. This is a direct benefit of the
approaches described in previous sections. It can be
noted that compilation time speedup magnifies for
larger programs. While for small program, such as
256.gzip which is comprised of 2 source files, the
compilation time ratio is around 0.7, for large
program, such as 176.gcc, the ratio is already 0.16,
and it decreases more for even larger applications.

For commercial compilers, there are compilation
time requirements. For example, customers who are
adhering to a nightly build and test cycle need their
compilation processes to finish within a given time
span. The fact that HLO showed very large overheads

0%

100%

200%

300%

400%

500%

600%

164.gzip
175.vpr

176.gcc
181.mcf

186.crafty

197.parser
252.eon

253.perlbmk
254.gap

255.vortex

256.bzip2
300.twolf

O2

HLO

SYZYGY

Figure 3: Compilation time comparison.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

over O2 caused many customers to abandon this
compilation model, forgoing potential performance
opportunities.

The performance improvement with O4 over O2
is illustrated in Figure 4. Run-time performance
improves significantly when interprocedural
optimizations are performed, which is an expected
result. This is not only true for the SPEC2000 integer
benchmark programs, where we observed an average
improvement of over 20%, but we have also observed
significant speedups on many large commercial and
technical applications. The performance benefits
obtained using SYZYGY versus using HLO are
comparable, as the same set of optimizations is
performed (there is a slight advantage to SYZYGY
due to better inlining decisions).

In order to obtain a deeper understanding of the
behavior of IPO, we monitored both CPU and memory
usage during compilation of a very large commercial
application and correlated this data with individual
phases in u2comp. This application consists of about
5000 source files mainly written in C and has about 4
million lines of code. The call graph for this
application has around 70000 routines and around
700000 call sites.

The u2comp binary runs as a 32-bit process and
such a process has a 1GB address room available on
HP-UX for text (code) and another 1GB for data
(static data, stack, and dynamic data). The u2comp
binary however is built as an EXEC_MAGIC binary,
which is a HP-UX term indicating that text and data
segments can be shared, resulting in an available data
space of approximately 1.9 GB (there are some OS
specific memory blocks allocated in these segments as
well).

The graph in Figure 5 shows memory
consumption and CPU load during the u2comp phase.
The x-axis represents a compilation time of about 3.5
hours. The left y-axis represents memory consumption
in Gigabytes, and the right y-axis represents CPU load
in percent. The black line in the graph corresponds to
the changes in CPU load over time during IPO. The
filled areas of the graph represent as ordered from the
bottom: text (code) size, which is only a very thin bar
at the very bottom, stack size, which is set to a default
of 256 MB by the kernel, static and dynamic data,
which makes the bulk of the memory consumption,
and the size of mmap'ed files, which are mapped into
the current address space.

One can clearly distinguish I/O intensive phases,
as well as CPU bound phases. The graph illustrates the
following:

• Memory consumption is very low (about 200MB
for dynamic data) and the CPU load is average until
the call graph is constructed, which corresponds to
the first little bump in the memory consumption
after about one fifth of the IPO time.

• Memory consumption for the following analyses
only increases moderately over the second fifth of
the IPO time. The CPU load increases to high,
indicating that analysis is CPU bound and performs
more IELF file reading than writing.

• The third fifth of the IPO time also shows only
moderate increase in memory consumption.
However, the CPU load goes down drastically,
which is caused by the IPO phase writing back the
transformation results to the IELF files.

• The spike in the middle of the graph marks the start
of the procedure inlining phase. Since we keep a

0%

10%

20%

30%

40%

50%

164.gzip
175.vpr

176.gcc
181.mcf

186.crafty

197.parser
252.eon

253.perlbmk
254.gap

255.vortex
256.bzip2

300.twolf
average

Figure 4: IPO performance improvement over O2.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

pool of IELF files open, the size of mmap'ed files
increases as well as core memory usage. Note that
the inlining heuristics try to open up as much as
500 MB in core. The inlining phase takes
approximately 50% of the IPO time.

The total memory requirement for this
compilation was about 1.4 GB, which is well below
the ~1.9 GB available for a 32-bit process. The
memory consumption can be scaled down even more
by making the inliner file cache smaller. This however
may increase compile time, as more files need to be
rewritten.

5. Related work

Hall’s dissertation addresses interprocedural
optimizations and related issues [10]. This work
mainly focuses on an algorithm for a call graph
construction, a program representation for IPO, and
some in-depth studies on procedure cloning and
inlining. While this work is related to certain aspects
of our IPO framework, in particular the inlining
component, it does not cover as many issues or
addresses as large scale a problem as our infrastructure
does.

The approach described in [3] is a full-fledged
implementation in a production compiler that has been
deployed for some applications, and which now has
been replaced with the SYZYGY IPO framework.
From our experience, the inherent framework of the
optimizer in [3] had serious limitations when it came
to operation in whole program mode for large

applications. While the implementation used a
threshold based memory off-loading scheme, it did not
pay any attention to the size of the working set a priori
like our approach. It also did not propose any solutions
for minimizing overhead due to intermediate file set
handling.

The promising new infrastructure LLVM [16,17]
for the gcc compiler tries to solve a similar problem
to what we discussed in this paper and their front-end
architecture is similar to ours. However, their post link
optimization phase is monolithic and operates on a
single merged "object" file. The scalability of this
approach is not clear, as it is exposed to the same
problems as the model in [3]. The Open Research
compiler (ORC) [15] is a continuation of the SGI
Pro64 compiler [9] and has a similar overall IPO
architecture as our current implementation. We believe
that the ideal IPO model, once implemented, would
further improve overall scalability of IPO.

Some approaches such as [18] work on a much
lower form of the IR, one that is closer to the target
machine. The advantage for such link time optimizers
is that the memory management issue is greatly
simplified without the high-level symbol table
representation. However, they are not as retargetable
as high-level optimizers and working on a machine-
level IR has its own set of unique problems. The gcc
compiler server [4] offers a model where the compiler
is loaded as a daemon process (or memory resident
process) accepting compilation requests. The compiler
maintains the IR for all input files before starting
optimizations and code generation. This model seems

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

10

20

30

40

50

60

70

80

90

100

text stack data mmap % cpu

Figure 5: Memory usage and CPU load during IPA.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

to be more suited for compile time reduction and its
scalability to very large applications is unclear.

6. Conclusion

In this paper we described our experience with the
new SYZYGY framework for performing cross-
module IPO. This framework has been implemented
and deployed on HP-UX Itanium® platforms. Using
this framework, we have successfully compiled dozens
of large applications consisting of thousands of files
with millions of lines of code. We have demonstrated
significant performance improvements using IPO with
reasonable compilation times. The IPO compilation
model presented in this paper is significantly more
usable than other approaches described in the past.

7. Acknowledgements

This work is the result of a strong team effort
within the HP compiler groups. We thank Suneel Jain
for his support and contributions and the anonymous
reviewers for their invaluable feedback.

8. References

 [1] A. Aho, R. Sethi, and J. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley,
Reading, MA, 1986.

 [2] A. Ayers, R. Schooler, and R. Gottlieb, “Aggressive
Inlining”, Proceedings of the ACM SIGPLAN ‘97
Conference on Programming Language Design and
Implementation, Las Vegas, Nevada, June 1997, pp.
134-145.

 [3] A. Ayers, S. de Jong, J. Peyton, and R. Shooler,
“Scalable Cross-Module Optimization Framework”,
Proceedings of the ACM SIGPLAN ’98 Conference on
Programming Language Design and Implementation,
Montreal, June 1998, pp. 301-312.

 [4] P. Bothner, “A Compiler Server for GCC”,
Proceedings of the First Annual GCC Developers'
Summit, Ottawa, Canada, May 2003.

 [5] M. Burke and L. Torczon, “Interprocedural
Optimization: Eliminating Unnecessary
Recompilation”, ACM Transactions on Programming
Languages and Systems, 15(3), July 1993, pp. 367-
399.

 [6] D.R. Chakrabrati, L.A. Lozano, X.D. Li, and S. Liu,
“Dynamic, Context-Sensitive Cross-File Inline
Ordering”, Submitted for publication.

 [7] K.D. Cooper, M.W. Hall, and L. Torczon, “An
Experiment with Inline Substitution”, Software -
Practice and Experience, 21(6), June 1991, pp. 581-
601.

 [8] Free Software Foundation, “GNU Make”,
http://www.gnu.org/software/make.

 [9] G. Gao, J.N. Amaral, J.C. Dehnert, and R.A. Towle,
“Tutorial on The SGI Pro64 Compiler Infrastructure”,
Tutorial presented at the 9th International Conference
on Parallel Architectures and Compilation
Techniques, Philadelphia, Pennsylvania. October
2000.

[10] M.W. Hall, “Managing Interprocedural Optimization”,
PhD Dissertation, Rice University, April 1991.

[11] D.R. Hanson, “Fast Allocation and Deallocation of
Memory based on Object Lifetimes”, Software –
Practice and Experience, 20(1), January 1990, pp. 5-
12.

[12] Hewlett-Packard Company, “ELF Object File
Format”, http://devrsrc1.external.hp.com/S
TKT/partner/elf-64-hp.pdf.

[13] IBM, “IBM Rational ClearCase Command
Reference”, ftp://ftp.software.ibm.com/soft
ware/rational/docs/v2002/cc/ccase_all/ccr
ef/clearmake.html.

[14] Intel Cooperation, “Intel® Itanium® Architecture
Software Developer's Manual”.

[15] R. Ju, S. Chan, F. Chow, X. Feng, and W. Chen,
“Open Research Compiler (ORC): Beyond Version
1.0”, Tutorial presented at the 11th International
Conference on Parallel Architecture and Compilation
Techniques, Charlottesville, Virginia, September,
2002.

[16] C. Lattner and V. Adve, “Architecture for a Next-
Generation GCC”, Proceedings of the First Annual
GCC Developers' Summit, Ottawa, Canada, May 2003.

[17] C. Lattner and V. Adve, “LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation”, Proceedings of the 2nd IEEE/ACM
International Symposium on Code Generation and
Optimization, Palo Alto, California, March 2004.

[18] A. Srivastava and D.W. Wall, “A Practical System for
Intermodule Code Optimization at Link-Time”,
Journal of Programming Language, 1(1), December
1992, pp. 1-18.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

