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Abstract 

Performing analysis across module boundaries 
for an entire program is important for exploiting 
several runtime performance opportunities. However, 
due to scalability problems in existing full-program 
analysis frameworks, such performance opportunities 
are only realized by paying tremendous compile-time 
costs. Alternative solutions, such as partial 
compilations or user assertions, are complicated or 
unsafe and as a result, not many commercial 
applications are compiled today with cross-module 
optimizations. 

This paper presents SYZYGY, a practical 
framework for performing efficient, scalable, 
interprocedural optimizations. The framework is 
implemented in the HP-UX Itanium® compilers and 
we have successfully compiled many very large 
applications consisting of millions of lines of code. We 
achieved performance improvements of up to 40% 
over optimization level two and compilation time 
improvements in the order of 100% and more 
compared to a previous approach. 

1. Introduction 

Interprocedural optimizations (IPO) have been 
known to provide substantial runtime performance 
benefits. To name a few, cross-module procedure 
inlining, indirect call promotion, dead global variable 
elimination, and code and data layout optimizations 
are proven methods for improving performance of an 
application. For many of such optimizations, like dead 
function and global variable elimination, whole-
program analysis is a must for ensuring the correctness 
of program execution. Others, such as those benefiting 
from interprocedural pointer alias analysis 
information, are more effective when performed in 

whole-program mode. Yet other transformations, such 
as procedure inlining, are able to yield maximal 
potential performance as the scope is enlarged to 
include the entire application. 

Nevertheless, IPO has not seen wide-scale uses 
amongst application developers and vendors, as long 
compilation time and huge memory consumption 
present significant usability hurdles to the deployment 
of whole program optimization. In a naive 
implementation, the working set for interprocedural 
optimizations grows in a super-linear fashion with the 
size of application. The sheer size and the amount of 
swapping it induces put insurmountable pressure on 
the virtual memory system. We have also observed 
that such implementation very quickly reaches its 
limits in file set handling when thrown at large 
applications. 

One of the existing techniques for addressing 
these problems is partial IPO, i.e., performing 
interprocedural optimizations on a subset of the files 
constituting an application. This technique is more of a 
workaround than a viable solution because it cannot 
apply transformations that rely on whole-program 
analysis. In addition, it requires guidance either 
directly from the application developer or from an 
extra profiling pass to determine the subset of the 
application files that are important. Another common 
technique is to use user assertion options, such as 
telling the compiler that the addresses of global 
variables are not taken anywhere in entire application. 
In General, the use of such assertions is unsafe and 
requires intimate knowledge of the details of the 
application. They also do not prove to be adaptive to 
changes in the application over time. Other assertions 
like linker options for binding or specifying the link 
order require significant user intervention to exploit 
optimization opportunities and are once again not 
adaptive to changes in the application. Some 
compilers use elaborate memory management schemes 
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to manage large working sets such as offloading 
information when a certain memory usage threshold is 
reached [3]. However, they typically run into a 
problem because of not knowing how large a working 
set should be allowed to grow. By the time the 
threshold is reached it is usually too late and the 
offloading itself becomes a bottleneck. 

In this paper, we describe SYZYGY, a scalable 
framework for performing IPO that provides a viable 
solution to developers and vendors in terms of 
usability and runtime performance of applications. We 
informally define scalability of an IPO compilation 
process in terms of achieved compilation time at a 
lower optimization level (O2) and in terms of utilized 
disk space compared to a compilation producing 
debug information (-g). In particular, for our purpose, 
an IPO compilation is considered to scale if the total 
compilation time overhead compared to an O2 
compilation and the required disk space compared to a 
debug compilation do not exceed the a factor of 3. 

We achieve scalability through various means, 
which will be explained in greater detail in the 
remainder of this paper. Firstly, we push as much 
functionality as possible into the parallelizable front-
end and back-end parts of the compiler. Secondly, we 
generally try to split optimization phases into analysis 
and transformation phases, minimizing the size of 
additional in-memory or persistent data necessary for 
communication between the phases. Thirdly, the 
number of read and write operations on intermediate 
files is kept to a minimum during the compilation 
process and lastly, the intermediate file format has 
been designed carefully to minimize disk size and to 
optimize access times. 

The rest of this paper is organized as follows. 
Section 2 introduces our view of an ideal IPO 
compilation model. Section 3 provides a description of 
the SYZYGY IPO framework and several 
implementation issues, as well as IELF, our persistent 
intermediate representation (IR). In Section 4, 
compilation time and performance measurements are 
presented. Section 5 addresses related work, followed 
by the conclusions. 

2. IPO compilation model 

There are many, often conflicting, objectives to 
accomplish during the compilation process, such as 
correctness, high performance, reasonable compilation 
time, debuggability, and so on. Putting aside the 
correctness, the indispensable goal of the compilation, 
optimizing compilers usually put more emphasis on 
achieving higher performance with the expense of 
longer compilation time. In case of IPO compilation, 
however, especially for large applications with 

thousand of files and millions of lines of codes, an 
excessive compilation time can be a major obstacle for 
its wider acceptance. 

In designing the SYZYGY IPO framework, the 
major emphasis has been put on achieving scalable 
compilation time for large applications, while 
preserving analysis precision and optimization 
opportunities as much as possible. The incremental 
IPO recompilation model [5], where the compilation is 
confined to the portions of the previous compilation 
that are invalidated by the source code changes, is one 
solution during recompilation of large applications in 
the event of small source code changes. While it is an 
attractive partial solution and possibly a future 
extension of our framework, in this paper we focus on 
the compilation of whole programs. 

The proposed IPO compilation model splits a 
standard compilation process into three distinct phases 
as illustrated in Figure 1: front-end (FE), 
interprocedural analysis engine (IPA), and back-end 
(BE). Both front-end and back-end operate on a single 
module at a time. The interprocedural analysis engine 
is the only place where whole program is seen and the 
interprocedural information is computed. While FE 
and BE can be executed in parallel at the module 
granularity taking advantage of multiple CPUs 
available within a machine or across a pool of 
networked machines, IPA is sequential in nature and 
thus become a major bottleneck in overall compilation 
time. As a result, it is very important to minimize the 
time taken during IPA to achieve scalable overall IPO 
compilation. 

In par with the compilation model, all 
interprocedural optimizations are also divided into 
three phases: summary collection, interprocedural 
analysis, and interprocedural optimization. 

FE

FE

FE

IPA

BE

BE

BE

... ...

Figure 1: Overview of IPO compilation model.
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2.1 Summary collection (FE) 

FE collects the module-level and procedure-level 
summaries that are needed for interprocedural 
analysis. The summary for a given optimization is a 
minimal subset of program representation that is 
essential in computing interprocedural information to 
determine the legality and the profitability of an 
optimization. Certain summaries are shared amongst 
several independent interprocedural analyses. Before 
collecting summaries, FE first applies a series of 
simple transformations, such as constant folding, IR 
canonicalization, algebraic expression simplification, 
etc., to present the IR to subsequent phases in a 
simplified and canonical form. Then standard scalar 
optimizations are performed to assist the collection of 
much more compact and precise summary 
information. 

The use of summaries for interprocedural analyses 
has several benefits. Firstly, it significantly reduces the 
working set. Secondly, summaries for an individual 
module can be computed independently in parallel 
with the summary computation for other modules. 
Also in case of recompilation, the summaries for 
unmodified modules can be reused without 
recomputing them. Lastly, the effect of certain 
interprocedural optimizations can be easily reflected 
on the summaries without modifying the IR. 
Therefore, well-designed summaries are crucial for 
IPA to efficiently compute effective interprocedural 
information. 

2.2 Interprocedural analysis (IPA) 

IPA processes a set of modules that constitute the 
whole compilation and builds the global symbol table 
and the call graph after performing name resolution 
and type unification. Summaries gathered by FE are 
associated with the corresponding call graph nodes or 
edges. Then a series of analyses are performed 
interprocedurally based on the summaries on top of 
the call graph and the local/global symbol tables. 
Interprocedural analysis results are gathered in an 
appropriate form and passed to BE either to direct 
interprocedural transformations or to allow further 
local optimizations with refined information. 

In non-IPO compilation, optimizations have to 
conservatively assume the behavior of non-visible 
parts of a program. The purpose of most 
interprocedural analyses is to collect the behavior of 
whole program and assist in improving the quality of 
local optimizations. For instance, the results of 
interprocedural constant propagation can be used by 
local constant propagation or other local optimizations 

to make safe assumption on the possible values of a 
formal argument. 

There are several interprocedural optimizations 
such as procedure inlining, procedure cloning, and 
indirect call promotion that need contexts from other 
modules in order to perform the required 
transformations. For example, inlining may need the 
callee procedure body from another module and 
indirect call promotion may need the target procedure 
symbol. Usually these kinds of transformations are 
performed during IPA, but can be deferred to BE to 
fully take advantage of BE’s parallelism. This can be 
accomplished either by copying the required contexts 
or through the central program database shared by 
multiple BEs. 

In this ideal IPO model, IPA does not directly 
reference or modify the code representation part of the 
IR; only the summaries are accessed. Although the 
actual code transformations are deferred, it is 
important for an individual analysis phase to update 
summaries reflecting what will happen later so that the 
following analyses can be performed with valid 
summaries. When transformations are applied, 
existing summaries become either invalid or less 
precise (conservative). The invalidated summaries 
should be appropriately updated for the correctness of 
subsequent analyses, while less precise (conservative) 
summaries can be safely used without an update. 

A cross-module interprocedural compilation 
uncovers unique compilation time reduction 
opportunities over a normal compilation, that is, to 
remove redundant or unused compilation units, such 
as duplicate COMDAT1 sections and dead functions. 
Interestingly, it is our observation that larger 
applications tend to have many of such opportunities, 
helping IPO to become a more affordable option. 

2.3 Interprocedural optimization (BE) 

BE consumes an individual module annotated 
with interprocedural analysis results computed by IPA 
and performs optimizations and code generation. The 
scope of optimizations performed within BE is either 
intra-module/inter-procedural or intra-procedural 
level. In case of cross-module/inter-procedural 
transformations, IPA already decided what to do and 
prepared IR with enough contexts from other modules 
such that the original cross-module transformations 
can be performed as intra-module transformations. 

                                                           
1 COMDAT is an ELF section that can be defined by more than one 
object file. It is typically used for the compile-time template 
instantiation. 
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3. SYZYGY IPO framework 

This section presents a detailed description of the 
SYZYGY IPO framework which is implemented in 
the HP C/C++/Fortran compilers for HP-UX Itanium® 
systems. First we describe IELF files, a persistent 
binary intermediate representation used to 
communicate between FE, IPA, and BE. 

3.1 Intermediate representation (IELF) 

An IELF file contains a language independent 
intermediate representation (IR) of a compilation unit. 
IELF files are regular 32/64-bit ELF [12] files 
containing an ELF header, a symbol table, a string 
table, a section table, as well as several sections for 
binary representation of the internal IR representing 
the compiled program. 

In the memory representation, the IR is 
maintained in memory arenas (blocks of memory 
whose allocation and de-allocation are controlled by 
the compiler; similar to [11]). All the references to 
arena objects are done through unique identifiers (ID) 
instead of pointers. Each arena maintains an associated 
ID array which contains pointers to owned objects; the 
object’s ID is the position of the pointer to the object 
in the ID array associated with its owning arena. In 
IELF files, ID arrays are stored in a separate ELF 
section as arrays of arena offsets. Another ELF section 
contains mappings for fast finding of an arena’s ID 
array. 

The usage of IDs for cross-referencing between 
arena objects enables a consistent in-memory and out-
of-memory representation of the IR. As a result, when 
an IELF file is read in, persistent arenas can be 
directly mmap’ed into the core memory. All references 
to objects in persistent arenas remain valid when they 
are mapped from or unmapped to the IELF file. Only 
ID arrays need to be handled appropriately to achieve 
persistency. The conversion between pointers and 
arena offsets in ID arrays is performed when IELF 
files are read or written. The conversion of ID arrays is 
done in a lazy fashion whenever possible. For 
frequently-used arenas, such as the global symbol 
table, their ID arrays are always converted during 
IELF read/write. The ID arrays of other arenas are 
converted to array of pointers when first referenced 
and converted back to array of arena offsets on write. 
The conversion of an ID array is extremely fast and 
only requires one pass over it. 

During various compilation phases, a large 
number of IR objects can be created and deleted 
resulting in fragmentation in the arenas, which in turn 
can result in poor locality. This can be severe 
particularly for the arenas of variable length objects 

where reusing of deleted space is difficult. Therefore, 
during IELF writing, the live objects within an arena 
are compacted together. 

Typically, the size of an IELF file is on average 
five times larger than its real object file, but for certain 
pathological cases we observed overheads of 700 
times compared to the real object file size. This can be 
easily understood. For example, given a source file 
containing a very short function with a reference to a 
field of a very large structure, its real object file would 
contain only a few instructions, such as a load of the 
structure address, a load of an field offset, and then the 
access itself. However, the IR has to represent the 
whole structure with field and type information. 
Therefore, it seems fairer to compare the size of an 
IELF file with that of a corresponding real object file 
containing debug information, where we experienced 
average overhead of slightly below 3 times. 

Since IELF files contain binary data, care must be 
taken to guarantee the compatibility during the 
evolution of the compiler. We designed several ways 
to extend the content of IELF files in an upward 
compatible fashion so that newer compilers can work 
with IELF files generated from an older compiler. For 
example, an IELF file can contain arbitrary number of 
annotations, blocks of arbitrary binary data, and an 
object’s ID can be used as an index into them. The 
compiler has to gracefully react depending on the 
existence of a certain annotation. 

In summary, in designing the IELF representation, 
we made the classic engineering tradeoff and favored 
speed over size. Due to this design choice, reading of 
IELF files became extremely fast. Writing of IELF 
files turned out to be slower, and depending on 
machine characteristics, we experienced factors for 
writing over reading in the range from 2 to 10. 
Therefore, avoiding writing of IELF files during 
compilation is very important. 

3.2. IPO framework 

An overview of the SYZYGY compilation 
framework for cross-module IPO is illustrated in 
Figure 2. It divides a standard build process in four 
distinct phases: front-end, linker, ipa, and back-end. 

The front-end (FE) takes input source files and 
generates output IELF files after a series of simple 
optimizations and summary gathering phases. The 
summary gathering and the generation of IELF files 
are controlled by either specifying “+O4”, or 
combining a lower optimization level with the flag “-
ipo”. In cross-module IPO, IELF files are faked as 
real object files so that an existing build process can 
remain intact. 
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At link time, the linker (ld) resolves all 
dependencies and determines the list of object files 
required for the final build. The HP-UX linker has a 
mechanism for automatic dynamic extension and 
allows loading of so-called plugins, shared libraries 
that provides certain functions that follow a specific 
naming convention. These functions are searched and 
called by the linker, passing arrays of function pointers 
back and forth to allow effective data exchange 
between the linker and the plugins. The IPO specific 
plugin claims front-end generated IELF files, 
declaring to the linker its intention to work with them. 
It assembles a list of the IELF files, extracts individual 
IELF files out of IELF archives if needed, and gathers 
linkage information provided by the linker. After that, 
it finally forks and executes u2comp2. 

The IPA process u2comp accepts as input the 
IELF files and the linker-feedback files, performs 
cross-module interprocedural analyses and 
transformations, and generates another set of IELF 
files that will be consumed by back-ends. In addition, 
u2comp generates a “makefile” that builds final 
targets (real objects files) for all the IELF files by 
invoking the back-end (BE). Before u2comp finishes, 
it invokes make in parallel mode on the generated 
makefile. The make process replaces u2comp, which 
is no longer needed. 

The default number of back-end processes that 
make creates is set to the number of processors on the 
machine and can be user specified. Multiple flavors of 
make are supported, such as HP-UX make, GNU 
gmake [8], and IBM Rational clearmake [13]. The 
clearmake offers the capability of distributing 
builds over multiple machines. This "farming out" of 

                                                           
2 “u2comp” is a historical name for the HP-UX IPA executable. 

back-ends together with a proper build environment 
infrastructure can lead to a dramatic reduction of the 
time spent in back-end optimizations and code 
generation. 

After all back-ends finish, the control goes back 
to the linker, which then links the back-end generated 
real objects files with needed libraries to create the 
final executable. 

3.3. Interprocedural optimizations 

The ideal model presented in Section 2 advocates 
an IPO model where the interprocedural 
transformations are performed by BE using the 
interprocedural analysis results produced by IPA. With 
separate analysis and transformation, this can be easily 
accomplished for most interprocedural optimizations. 
As explained in the previous section, for some 
interprocedural transformations such as procedure 
inlining, IPA needs extra preparation work in order to 
defer them to BE. In the current implementation, we 
chose to perform procedure inlining in the u2comp 
process. 

Procedure inlining can dramatically change the 
structure of a program, so it is challenging to 
appropriately update pre-inline summaries. For this 
reason, procedure inlining is performed last in the IPA 
phase ordering. Due to this decision, all the other 
interprocedural transformations are also performed 
during IPA just before procedure inlining. The 
program structure changes by inline transformation are 
too severe to apply transformations determined by the 
analyses performed before procedure inlining. 

The u2comp phase starts with building global 
data structures such as global symbol table. We first 
remove redundant COMDAT sections and dead 

Figure 2: SYZYGY IPO framework. 
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functions to avoid unnecessary compilations spent on 
them during u2comp and back-end. After the 
duplicate COMDAT elimination, impacted modules 
are written out. Here, we could avoid writing of IELF 
files by using the same techniques described below. 
However, we chose to do that as the size of IELF files 
for C++ programs are greatly reduced after COMDAT 
elimination which helps reducing file I/O overhead for 
subsequent phases. Dead functions are identified right 
after the call graph construction and marked in the 
global symbol table, but the actual elimination is 
performed later, together with other transformations, 
to avoid IELF file writing. No summaries are impacted 
by these optimizations, except for the ones associated 
with removed objects which will be removed or 
ignored. Note that subsequent optimizations such as 
procedure inlining can result in more dead functions. 

After that, several well-known interprocedural 
analyses follow. The analysis results can either be kept 
in memory until the next IELF file write or be written 
out to separate files depending on the amount of 
information. For the analyses that derive 
transformations, we keep lists of transformations to be 
performed and apply them together just before the 
procedure inlining phase. The transformations are 
applied module by module and the resulting IELF files 
are written out. Before the transformation phase, the 
effects of a certain transformation need to be visible to 
the following analyses by updating either summaries 
or local symbol tables, which demands writing of 
IELF files. In order to avoid continuous rewriting, we 
maintain patch lists and apply them to the summaries 
and the IR whenever the corresponding IELF file is 
read-in. Although patching is done multiple times, this 
process is extremely fast and introduces negligible 
overhead. 

In summary, in our framework, all interprocedural 
optimizations excluding procedure inlining are 
performed with a single rewriting of IELF files (twice 
if duplicate COMDAT sections exist). This is 
accomplished by separating analysis and 
transformation phases, performing analyses on top of 
summaries, patching the IR on reads instead of 
rewrites, and applying a set of transformations in 
group at the end. 

3.4 Cross-module procedure inlining 

Procedure inlining [7] is a common optimization 
employed in compilers in order to reduce call 
overhead and enable optimizations that are otherwise 
not performed. Given a call-site from a caller routine 
to a callee routine, this technique replaces the call-site 
with a copy of the code for the callee. The elimination 
of the call-overhead directly improves performance 

(barring any potential I-cache penalties due to 
increased routine size). Another key benefit of 
procedure inlining is to increase the scope seen by the 
scalar/loop optimizer and instruction scheduler. While 
run-time performance improves in general, there are 
compile-time challenges when procedure inlining is 
applied to thousands of files. 

A traditional approach such as [2] works on the 
raw program representation during the inlining phase. 
While this works pretty well for small programs, the 
memory consumption of the compiler easily hits the 
system limit for larger applications. The method 
presented in [3] solves this problem by offloading data 
structures onto disk to free up process memory. While 
this scheme allows the memory consumption of a 
compiler to stay within system limits, the compilation 
time greatly suffers due to loading, offloading, and 
thrashing. 

Our framework solves this problem by having the 
analysis phase operate solely on program summary 
information. The IR is not opened at all during the 
analysis phase. A minimum set of summary 
information is maintained in the persistent 
representation of the program. At the start of the 
inlining phase, a top-level driver collects these 
persistent summaries and creates consolidated in-core 
summaries suitable for the analysis. The inlining 
heuristics employed in the analysis phase operate on 
these in-core summaries. 

In our framework, the inlining transformation 
phase attempts to keep a limit on the number of open 
files. The main motivation is to minimize the number 
of reads and writes of the IELF files. An ordering 
among the inlinable call-sites is dynamically generated 
during the transformation process in order to achieve 
this goal [6]. A limit is imposed on the number of 
open IELF files and the amount of memory they can 
consume. Once this limit is reached, IELF files are 
closed as necessary to accommodate opens of other 
IELF files. 

The approach presented in [2] performs several 
iterations of procedure inlining and scalar 
optimizations in order to accurately capture the impact 
of post-inline optimizations to assist subsequent 
inlining decision. While this works pretty well for 
achieving run-time performance, it is usually 
disastrous for compilation time while compiling large 
applications. Our framework uses a single analysis and 
a single transformation phase. In order to anticipate 
the effects of a certain inline instance, the summaries 
are updated after every inline decision. This leads to a 
significant improvement in compilation time as shown 
in the next section. We believe that careful update of 
the summaries can capture much of the effects of 
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subsequent optimizations and it is not necessary to 
have a multi-pass inlining scheme. 

4. Experimental results 

Our experimental results are obtained on an HP 
server rx5670 with four 900 MHz Intel® Itanium® 2 
processors, 8GB main memory, 1.5 MB L3 cache. We 
use the SPEC2000 integer benchmark suite for 
evaluating and comparing the compile-time and run-
time behavior of our compiler (Figure 3 and Figure 4). 
We use a very large commercial application to analyze 
scalability parameters, such as memory footprint and 
CPU load (Figure 5).  

The following three configurations are compared: 

• O2: This is the default optimization level without 
any interprocedural optimization. All optimizations 
at this level are performed at the routine-level. 

• SYZYGY: This setup corresponds to the highest 
optimization level, O4, which invokes 
interprocedural optimizations based on the 
SYZYGY IPO framework in addition to O2-level 
optimizations. The back-end phase is parallelized to 
4 processes, while no front-end parallelization is 
used matching with O2 behavior. This setup also 
invokes the high-level loop optimizer which has 
minimal impact on the performance of our 
benchmark applications. 

• HLO: This setup uses the previous interprocedural 
optimizer in the HP-UX compilers based on the 
framework presented in [2,3]. The set of 
optimizations performed in this setup is equivalent 
to the SYZYGY setup. 

The compilation time comparisons illustrated in 
Figure 3 highlight the followings: 

• SYZYGY vs. O2: The compilation time overhead 
of O4 over O2 is roughly less than two, which is a 
very positive result. We find this overhead factor 
confirmed in many large commercial and technical 
applications on machines with two or more 
processors. Note that large portions of O4 
compilation time overhead are due to the 
compilation time increase in back-end 
optimizations due to increased routine sizes after 
aggressive procedure inlining. Also note that for 
some applications having a serial build process, the 
effects of the back-end parallelization were 
significant enough to make the O4 compilation 
faster than the O2 compilation (for example, 
176.gcc and 252.eon). 252.eon is a good example 
for illustrating the unique advantages of IPO; 
duplicate COMDAT elimination greatly reduces 
back-end optimization time. 

• SYZYGY vs. HLO: The new IPO model achieves 
a very large compilation time speedup over the 
previous model. This is a direct benefit of the 
approaches described in previous sections. It can be 
noted that compilation time speedup magnifies for 
larger programs. While for small program, such as 
256.gzip which is comprised of 2 source files, the 
compilation time ratio is around 0.7, for large 
program, such as 176.gcc, the ratio is already 0.16, 
and it decreases more for even larger applications. 

For commercial compilers, there are compilation 
time requirements. For example, customers who are 
adhering to a nightly build and test cycle need their 
compilation processes to finish within a given time 
span. The fact that HLO showed very large overheads 
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Figure 3: Compilation time comparison. 
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over O2 caused many customers to abandon this 
compilation model, forgoing potential performance 
opportunities. 

The performance improvement with O4 over O2 
is illustrated in Figure 4. Run-time performance 
improves significantly when interprocedural 
optimizations are performed, which is an expected 
result. This is not only true for the SPEC2000 integer 
benchmark programs, where we observed an average 
improvement of over 20%, but we have also observed 
significant speedups on many large commercial and 
technical applications. The performance benefits 
obtained using SYZYGY versus using HLO are 
comparable, as the same set of optimizations is 
performed (there is a slight advantage to SYZYGY 
due to better inlining decisions). 

In order to obtain a deeper understanding of the 
behavior of IPO, we monitored both CPU and memory 
usage during compilation of a very large commercial 
application and correlated this data with individual 
phases in u2comp. This application consists of about 
5000 source files mainly written in C and has about 4 
million lines of code. The call graph for this 
application has around 70000 routines and around 
700000 call sites.  

The u2comp binary runs as a 32-bit process and 
such a process has a 1GB address room available on 
HP-UX for text (code) and another 1GB for data 
(static data, stack, and dynamic data). The u2comp 
binary however is built as an EXEC_MAGIC binary, 
which is a HP-UX term indicating that text and data 
segments can be shared, resulting in an available data 
space of approximately 1.9 GB (there are some OS 
specific memory blocks allocated in these segments as 
well). 

The graph in Figure 5 shows memory 
consumption and CPU load during the u2comp phase. 
The x-axis represents a compilation time of about 3.5 
hours. The left y-axis represents memory consumption 
in Gigabytes, and the right y-axis represents CPU load 
in percent. The black line in the graph corresponds to 
the changes in CPU load over time during IPO. The 
filled areas of the graph represent as ordered from the 
bottom: text (code) size, which is only a very thin bar 
at the very bottom, stack size, which is set to a default 
of 256 MB by the kernel, static and dynamic data, 
which makes the bulk of the memory consumption, 
and the size of mmap'ed files, which are mapped into 
the current address space. 

One can clearly distinguish I/O intensive phases, 
as well as CPU bound phases. The graph illustrates the 
following: 

• Memory consumption is very low (about 200MB 
for dynamic data) and the CPU load is average until 
the call graph is constructed, which corresponds to 
the first little bump in the memory consumption 
after about one fifth of the IPO time. 

• Memory consumption for the following analyses 
only increases moderately over the second fifth of 
the IPO time. The CPU load increases to high, 
indicating that analysis is CPU bound and performs 
more IELF file reading than writing. 

• The third fifth of the IPO time also shows only 
moderate increase in memory consumption. 
However, the CPU load goes down drastically, 
which is caused by the IPO phase writing back the 
transformation results to the IELF files. 

• The spike in the middle of the graph marks the start 
of the procedure inlining phase. Since we keep a 
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pool of IELF files open, the size of mmap'ed files 
increases as well as core memory usage. Note that 
the inlining heuristics try to open up as much as 
500 MB in core. The inlining phase takes 
approximately 50% of the IPO time. 

The total memory requirement for this 
compilation was about 1.4 GB, which is well below 
the ~1.9 GB available for a 32-bit process. The 
memory consumption can be scaled down even more 
by making the inliner file cache smaller. This however 
may increase compile time, as more files need to be 
rewritten. 

5. Related work 

Hall’s dissertation addresses interprocedural 
optimizations and related issues [10]. This work 
mainly focuses on an algorithm for a call graph 
construction, a program representation for IPO, and 
some in-depth studies on procedure cloning and 
inlining. While this work is related to certain aspects 
of our IPO framework, in particular the inlining 
component, it does not cover as many issues or 
addresses as large scale a problem as our infrastructure 
does. 

The approach described in [3] is a full-fledged 
implementation in a production compiler that has been 
deployed for some applications, and which now has 
been replaced with the SYZYGY IPO framework. 
From our experience, the inherent framework of the 
optimizer in [3] had serious limitations when it came 
to operation in whole program mode for large 

applications. While the implementation used a 
threshold based memory off-loading scheme, it did not 
pay any attention to the size of the working set a priori 
like our approach. It also did not propose any solutions 
for minimizing overhead due to intermediate file set 
handling. 

The promising new infrastructure LLVM [16,17] 
for the gcc compiler tries to solve a similar problem 
to what we discussed in this paper and their front-end 
architecture is similar to ours. However, their post link 
optimization phase is monolithic and operates on a 
single merged "object" file. The scalability of this 
approach is not clear, as it is exposed to the same 
problems as the model in [3]. The Open Research 
compiler (ORC) [15] is a continuation of the SGI 
Pro64 compiler [9] and has a similar overall IPO 
architecture as our current implementation. We believe 
that the ideal IPO model, once implemented, would 
further improve overall scalability of IPO. 

Some approaches such as [18] work on a much 
lower form of the IR, one that is closer to the target 
machine. The advantage for such link time optimizers 
is that the memory management issue is greatly 
simplified without the high-level symbol table 
representation. However, they are not as retargetable 
as high-level optimizers and working on a machine- 
level IR has its own set of unique problems. The gcc 
compiler server [4] offers a model where the compiler 
is loaded as a daemon process (or memory resident 
process) accepting compilation requests. The compiler 
maintains the IR for all input files before starting 
optimizations and code generation. This model seems 
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to be more suited for compile time reduction and its 
scalability to very large applications is unclear. 

6. Conclusion 

In this paper we described our experience with the 
new SYZYGY framework for performing cross-
module IPO. This framework has been implemented 
and deployed on HP-UX Itanium® platforms. Using 
this framework, we have successfully compiled dozens 
of large applications consisting of thousands of files 
with millions of lines of code. We have demonstrated 
significant performance improvements using IPO with 
reasonable compilation times. The IPO compilation 
model presented in this paper is significantly more 
usable than other approaches described in the past. 
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