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Abstract 
64-bit processor architectures like the Intel® Ita-

nium® Processor Family are designed for large applica-
tions that need large memory addresses. When running 
applications that fit within a 32-bit address space, 64-bit 
CPUs are at a disadvantage compared to 32-bit CPUs 
because of the larger memory footprints for their data. 
This results in worse cache and TLB utilization, and con-
sequently lower performance because of increased miss 
ratios. This paper considers software techniques for vir-
tual machines that allow 32-bit pointers to be used on 64-
bit CPUs for managed runtime applications that do not 
need the full 64-bit address space. We describe our 
pointer compression techniques and discuss our experi-
ence implementing these for Java1 applications.  In addi-
tion, we give performance results with our techniques for 
both the SPEC JVM98 and SPEC JBB2000 benchmarks. 
We demonstrate a 12% performance improvement on 
SPEC JBB2000 and a reduction in the number of garbage 
collections required for a given heap size. 

1.  Introduction 

Processor architectures such as the Intel® Itanium® 
Processor Family [8] (IPF) enable large applications (such 
as enterprise applications) to use a 64-bit address space 
instead of the traditional 32-bit address space. A well-
known drawback of 64-bit addressing is that pointer-
based data structures consume more memory than their 
32-bit counterparts, and the application therefore loses 
performance as a result of additional cache misses, TLB 
faults, and paging [13]. The increased memory footprint 
is especially troubling when running an application whose 
memory requirements actually fit entirely within a 32-bit 
address space, and yet the application is forced to pay the 
price of wide pointers.   
                                                           

1 Other brands and names are the property of their respective own-
ers. 

In this paper, we describe our experience with com-
pressing 64-bit pointers into 32 bits within the framework 
of a Java virtual machine [5].  Java programs offer a key 
advantage over arbitrary C programs in that pointers are 
always distinguishable from non-pointers. This gives us 
wide latitude in choosing a pointer compression scheme. 
Furthermore, the compression can be performed com-
pletely within application software (i.e., the virtual ma-
chine) without depending on platform-specific hardware 
or operating system features, making it more portable 
across different architectures and operating systems. 

1.1.  Solution overview 

We compress raw 64-bit pointers into 32 bits by rep-
resenting a pointer as an unsigned 32-bit offset from the 
base of a contiguous memory region. We focus compres-
sion on pointers within the Java heap, because the vast 
majority of memory in a typical Java application consists 
of heap-allocated Java objects. The compressible pointers 
within those Java objects consist of vtable pointers and 
pointers to other Java objects. This means that a com-
pressed vtable pointer is represented as an offset into the 
contiguous vtable area, and a compressed Java reference 
pointer is represented as an offset into the contiguous Java 
heap. 

Before dereferencing a pointer loaded from the Java 
heap the system must first decompress it by adding the 
heap base address. Similarly, the system must compress a 
pointer by subtracting the heap base address, before stor-
ing the lower 32 bits into the heap. Compression and de-
compression are the operations used to convert between 
raw and compressed pointers. 

Our compression technique is simple and straight-
forward. Its compression and decompression, however, 
require additional instructions and also frequently extend 
the critical path of some computations. When we started 
this work it was unclear whether the improvement in 
memory stalls would outweigh this overhead. Our results 
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show this is indeed true and that there is a significant im-
provement in performance across a range of benchmarks. 

Most 64-bit architectures (including the IPF) can 
support 32-bit applications directly. However, our com-
pression technique allows a virtual machine (VM) to run 
an application with the advantages of 32-bit addressing, 
but with more than 32-bits of storage. In particular, since 
the VM is running as a 64-bit application, it can use a full 
4GB for the garbage-collected heap. It can allocate stor-
age for code, virtual method tables, and other VM-
allocated data structures outside of this 4GB space. Fur-
thermore, using the shifted offset technique described 
below, the VM can expand the heap beyond the normal 
32-bit addressing limit of 4GB. 

Compression is not possible if there is so much data 
that some compressed pointers do not fit in 32 bits. In this 
event, the VM can revert to using uncompressed (raw) 
pointers. Most VMs require that the maximum heap size 
be specified at VM startup time (e.g., by using a com-
mand line argument), allowing the VM to decide whether 
to use 32-bit or 64-bit raw pointers. If the specified size is 
too large (e.g., more than 4GB), raw pointers will be used.  

It is important to note that the solution we describe 
represents a single point within a larger spectrum of im-
plementation choices. There are alternative ways to 
choose which pointers are compressed and how they are 
compressed.  Broadly speaking, there are three categories 
of locations where pointers reside: 

• Per-instance locations: vtable pointers and the ref-
erences in both instance fields and array elements. 

• Per-class locations: static fields, method pointers in 
vtables, and some fields in internal VM data struc-
tures. 

• Other locations: various internal VM data struc-
tures and temporary storage such as memory stack, 
registers, and so on. 

Our compressed pointer design focuses on per-
instance pointer fields within the Java heap, because of 
their large contribution to the memory footprint of an 
application. We also compress object references con-
tained in static fields because this allows the JIT to as-
sume that all reference fields are of uniform size. 

Our design considers only one compressed pointer 
representation (i.e., a 32-bit unsigned offset from the 
memory base), but alternative representations could be 
used as well. For example, pointers from one heap object 
to another could be represented as a 32-bit signed offset 
from the base of the first object. More complex functions 
could be used if the memory region is not contiguous. In 
addition, the minimum alignment requirement of all ob-
jects can be used to expand the 4 GB addressing limit by 
treating compressed pointers as shifted offsets. This shift-
ing trick can be applied to compressed vtable pointers and 
compressed reference pointers. 

Each such extension to the basic design introduces its 
own implementation complexities and performance con-
siderations, and could lead to either better or worse per-
formance. In this paper, however, we focus on the simple 
compression scheme. 

In addition to deciding which pointers to compress, 
another system-wide decision has to be made: whether 
reference arguments and return values should be passed 
as compressed pointers or raw pointers.  We chose to use 
raw pointer arguments since we believed this to be more 
efficient in JIT generated code. Furthermore, this mini-
mized changes in our system. However, using compressed 
pointer arguments, or some combination of the two ap-
proaches, could also be considered. 

1.2.  System overview 

Our solution has been implemented for Java [5] ap-
plications running on the ORP [1] virtual machine with 
the StarJIT [2] just-in-time compiler. Our techniques ap-
ply equally well to Common Language Infrastructure 
(CLI) [6] applications even though our current implemen-
tation supports only Java.  

ORP is a high-performance VM that supports both 
Java and CLI applications. It was designed with perform-
ance and flexibility as the main goals, and its flexibility 
allows us to easily experiment with new optimizations. 
ORP’s modular design allows us to dynamically load dif-
ferent garbage collectors (GCs) as well as multiple just-
in-time (JIT) compilers, the most recent of which is Star-
JIT.  The default garbage collector used by ORP performs 
parallel sliding compaction to maximize application 
throughput, and typically accounts for only a small por-
tion (just 3% for SPEC JBB2000) of an application’s exe-
cution time. Using StarJIT and the default GC, ORP’s 
performance is competitive with the best commercial Java 
VMs.  

The optimizing StarJIT compiler uses a single SSA-
based intermediate representation and global optimization 
framework to compile both Java and CLI. It starts compi-
lation by translating bytecodes to the StarJIT intermediate 
representation (STIR).  After bytecode translation, Star-
JIT’s global optimizer operates on this representation to 
perform mostly architecture-neutral classical optimiza-
tions (such as dead code elimination and redundancy 
elimination), as well as optimizations targeted to type-
safe object-oriented programs (such as devirtualization 
and run-time check elimination). STIR’s low-level opera-
tors and types expose finer-grain operations to global op-
timizations. Both STIR and the global optimizer directly 
support compressed pointers. STIR includes operators to 
manipulate compressed pointers, and types to represent 
compressed pointer values. The global optimizer uses 
optimizations that reduce in strength or height sequences 
of operations on compressed pointers.  
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After the global optimizer runs, StarJIT’s code gen-
erator for IPF lowers STIR instructions into IPF code 
sequences, performs machine-level optimizations (such as 
register allocation and scheduling), generates runtime 
tables (such as those used for stack unwinding and excep-
tion handling), and emits the bits that the processor exe-
cutes.  The code generator does trace scheduling; its 
global scheduler schedules one trace at a time, and per-
forms register allocation, predication and speculation dur-
ing scheduling. Because the code generator runs after the 
global optimizer, and on a lower-level program represen-
tation, it can further optimize code sequences involving 
compressed references. 

1.3.  Organization of the paper 

The remainder of the paper is organized as follows. 
Section 2 describes in detail the issues of compressing the 
object header, including the vtable pointer. Section 3 de-
scribes the more complex details of compressing refer-
ence pointers within the Java heap. Section 4 presents the 
performance results across a set of benchmark applica-
tions. Section 5 describes related work, and Section 6 
presents conclusions. 

2.  Object header compression 

2.1.  Overview 

In ORP, every object includes a standard header, 
which consists of a vtable pointer and a combined syn-
chronization/hashcode value. The vtable pointer normally 
contains a raw pointer to a vtable structure.  The synchro-
nization value is partitioned into 16 bits to hold the thread 
ID of the current locker, 8 bits to hold the lock recursion 
count, and 8 bits to hold the default hashcode. If the re-
cursion count overflows beyond 8 bits, the synchroniza-
tion value is treated as a link to a fatter lock structure. 
This organization of the object header is fairly common 
across commercial and research VMs[9][11]. 

On a system with 64-bit pointers, it is natural to allo-
cate 8 bytes for the vtable pointer. It is also convenient to 
allocate 8 bytes for the synchronization value, so that the 
virtual machine can assign object field offsets assuming 
an initial 8-byte alignment. This yields a per-object over-
head of 16 bytes, compared to 8 bytes on a 32-bit system. 

In the 64-bit implementation of ORP, we reduce the 
overhead to 8 bytes per object by using only 4 bytes for 

the vtable pointer and 4 bytes for the synchronization 
value.  Instead of being a raw pointer, the value in the 
vtable slot is treated as an unsigned offset from the base 
of the vtable area in memory. Figure 1 depicts the layout 
of the object header for the raw and the compressed cases 
on a 64-bit system. At ORP startup time, the VM allo-
cates a single contiguous chunk of memory for holding all 
vtables. The vtable space must be contiguous, generally 
meaning that the VM must put a bound at startup on the 
amount of vtable space available.  (If such a bound is un-
acceptable, there are ways to relax this requirement, but 
that is beyond the scope of this paper.)  The interface 
function orp_get_vtable_base() provides a pointer to the 
start of the vtable area.  ORP guarantees that this is a con-
stant function, so the value can be cached by the GC and 
emitted as a constant in JIT-generated code. The VM and 
GC components access an object’s vtable information in 
similar ways, and both are similarly modified to support 
compressed object headers.  Each time a vtable pointer is 
loaded from an object and dereferenced, we instead load 
the 32-bit value, decompress it, then dereference the re-
sulting 64-bit pointer. Decompressing a 32-bit vtable 
pointer involves zero-extending it to 64 bits and adding 
the 64-bit value orp_get_vtable_base(). On many proces-
sor architectures including the IPF, the zero extension 
operation can be folded into the 32-bit load instruction.  

During object allocation, the vtable pointer is set by 
subtracting orp_get_vtable_base() from the raw vtable 
address and storing the lower 32 bits into the object. Con-
verting from raw to compressed vtable references may 
add an additional operation to the critical path, but in our 
experience, relatively few such operations are performed 
by the VM and GC components so the performance im-
pact is not noticeable. 

It is fairly common for a garbage collector (particu-
larly a stop-the-world collector) to temporarily hijack part 
of the object header during garbage collection and use it 
for GC purposes. For example, it might overwrite an ob-
ject’s synchronization value with a forwarding pointer if 
the object is being moved.  In this example, if the syn-
chronization value is compressed to 32 bits, then the for-
warding pointer can be treated as a compressed reference, 
using techniques described in Section 1.1.  

Using similar techniques, the vtable pointer in an ob-
ject could be narrowed even further, to 24 or perhaps 16 
bits.  If all vtables are aligned at 64-byte boundaries, then 
a 16-bit vtable pointer value can allow up to 4MB of total 
vtable space, which is more than adequate in our experi-
ence. However, this introduces an additional shift opera-

Figure 1: Compressing the object header

Vtable pointer
(unused) RecursionThread ID Hashcode

Vtable offset
RecursionThread ID Hashcode
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tion into the critical path when dereferencing an object’s 
vtable. Furthermore, to have any impact on the live heap 
size, the application must have classes that not only have 
many instances, but also have 1- or 2-byte fields, such 
that moving a field into the free space in the object header 
causes the aligned object size to decrease. To illustrate, 
Java’s String class contains only reference and 32-bit in-
teger fields, so it would not benefit from shrinking its 
header by an additional 2 bytes. 

2.2.  JIT implementation and issues 

The JIT-generated code uses the vtable pointer in two 
ways: for exact type checks and for dereferencing the 

vtable (e.g., for virtual method dispatch). An exact type 
check tests an object’s vtable pointer against a known 
constant value as a condition for executing an optimized 
control path. With compressed vtable pointers, the con-
stant value is guaranteed to fit within 32 bits, and in prac-
tice the value usually fits within fewer bits. The code 
sequence for an exact type check on IPF is shown in Fig-
ure 2. With a 22-bit or smaller vtable offset, the sequence 
takes one fewer syllable on IPF when vtables are com-
pressed.  

 
The code sequence for dereferencing an object’s 

vtable typically loads the 64-bit vtable pointer from the 
object, adding a constant (the virtual method’s offset in 
the vtable), and dereferencing the result.  When using 
compressed vtable pointers the address of the base of 
vtables (orp_get_vtable_base()) needs to be added to the 

compressed vtable pointer as well. Since in ORP this base 
address is a JIT-time constant, we can precompute its 
addition to the virtual method offset. This precomputation 
can be done ahead of the load of the vtable.  The code 
sequence for IPF is shown in Figure 3.  

3.  Reference compression 

This section describes the key implementation details 
of compressing references in ORP. As previously dis-
cussed, compression is applied to object references within 
Java objects and arrays, as well as static reference fields.  
Other references, such as those within argument lists and 
vtables, are not compressed.  The following sections refer 
to the value heap_base, which ORP exposes through the 
interface function orp_heap_base_address(). ORP guar-
antees that this function returns a constant value during 
each ORP execution. 

3.1.  Null pointer representation 

A key issue in compressing references is how to rep-
resent a null reference, both in compressed and raw form.  
To motivate the discussion, we define three types of null 
values: 

• Managed null: the representation of a null value 
used in managed (i.e., JIT-generated) code. 

• Compressed null: the compressed representation 
of a managed null value. 

• Platform null: the representation of a null value 
used in native code. 

add   rOff = MethodOffset, rVtableBase
ld4    rVt = [rObj]               // load vtable
add   rMethodAddr = rOff, rVt 
call   [rMethodAddr] 

ld4    rVt = [rObj]               // load vtable
add   rMethodAddr = MethodOffset, rVt 
call   [rMethodAddr] 

Mov         ry = 22BitVtableOffset 
ld4           rx = [rObj]          // load vtable
cmp4.eq  pa,p0 = rx, 22BitVtableOffset

movl        ry = VtableAddress 
ld4           rx = [rObj]          // load vtable
cmp4.eq  pa,p0 = rx, ry  

a. vtable compression enabled b.  vtable compression disabled 

a. vtable compression enabled b. vtable compression disabled 

Figure 2: IPF instruction sequence for exact type check 

Figure 3: IPF instruction sequence for virtual method dispatch 
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On a 64-bit system without compressed references, 
both the managed null and the platform null are usually a 
64-bit zero value, and the compressed null is not used. 

When using compressed references, the simple com-
pression method of subtracting heap_base assumes that 
raw reference pointers fall within the contiguous address 
range [heap_base..heap_base+size-1]. However, this as-
sumption is invalid if the managed null is represented by 
a 64-bit pattern of zeros, so the resulting compressed ref-
erence does not fit within 32 bits. 

A practical choice of null representations should have 
the following properties: 

• The compressed null should be a 32-bit pattern of 
zeros, to simplify the object allocation sequence.  
Most GC implementations clear the heap in large 
chunks before object allocation, satisfying the Java 
and CLI requirements that all object fields be ini-
tialized to 0 or null at allocation.  If the compressed 
null is a zero, the allocation sequence remains sim-
ple and fast. 

• The platform null should not be changed, to avoid 
major changes in native code (including VM and 
GC code) that manipulates Java objects. Native 
code is typically written assuming that null refer-
ences are represented by the platform null. 

• The managed null representation should be com-
patible with the VM’s support for hardware null 
pointer exceptions (if any). 

To satisfy these properties, our solution uses 
heap_base to represent a managed null. If references are 
passed to or from native code (e.g. when invoking a na-
tive method or calling a VM runtime helper function), the 
VM marshals the values and translates between the man-
aged null and the platform null. Such translations are rela-
tively rare, in comparison to calls between JIT-generated 
methods. A minor consequence for the garbage collector 
is that it must not allow heap_base to be the address of an 
allocated object, so as not to conflict with the managed 
null. 

ORP does not currently support hardware null pointer 
exceptions on IPF.  StarJIT makes null pointer checks 
explicit because it eases safety analysis, and it simplifies 
speculative scheduling of load instructions above null 
pointer checks.  Nonetheless, it is straightforward to com-
bine hardware null pointer exceptions and compressed 
heap references if the first few pages of the heap are 
marked as unreadable and unwritable.  If the application 
attempts to access memory near the managed null ad-
dress, the virtual memory system will automatically catch 
the error, and the VM can then throw a null pointer 
exception. 

Note that a managed null needs special treatment for 
compressed references but not for compressed vtable 
pointers. This is simply because a valid vtable pointer is 
never null. 

3.2.  VM and GC implementation 

To support compressed references, we modified the 
VM and GC to convert between compressed and raw ref-
erences. We also changed null checks and other code that 
depends on the representation of a managed null. While 
numerous, these changes were straightforward except for 
those that translate between managed and platform nulls 
when transitioning to or from native code. 

The garbage collector can support a 4GB-aligned 
heap (the benefits of an aligned heap are discussed be-
low). Given a user-specified maximum heap size of M 
bytes, the collector allocates from the operating system a 
contiguous region of virtual address space of size M+4GB 
(without actually committing the space), and then com-
mits an M-byte sub-region starting at a 4GB-aligned ad-
dress. 

3.3.  JIT implementation 

The JIT-generated code needs to decompress a refer-
ence to an object that is loaded from the heap before ac-
cessing the vtable or any field of that object. If the 
reference is instead passed as an argument or a return 
value from one method to another, we have chosen with 
our calling convention to decompress the reference prior 
to passing it into or out of a method. The method receiv-
ing a reference often immediately accesses its vtable 
which, being at offset 0 from the base of the object, is 
directly addressed by a raw reference. In such situations it 
is easier to hide the latency of the decompression in the 
method that passes the argument rather than in the method 
that receives it. 

To get net performance gains from reference com-
pression, we found it crucial to optimize unnecessary 
compression and decompression to reduce the critical 
path and code size, as described below. It is important to 
consider the phase ordering between classical optimiza-
tions and the pass that lowers the compres-
sion/decompression arithmetic to ensure that they are 
optimized. 

• Load-store forwarding: If after loading a refer-
ence from the heap, it is later stored to the heap, 
the loaded compressed form should be directly 
used in the store. If the sole use of the loaded refer-
ence is the store to the heap, any inserted decom-
pression can be eliminated as dead code. 

• Null checks and reference comparisons: A null 
reference check can be performed as a comparison 
of the compressed reference to the compressed 
null, or as a comparison of the raw reference to the 
managed null.  If both forms of the reference are 
available, then the one available first should be 
used.  For example, the null check on a reference 
loaded from the heap may be better done as a com-
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parison with the compressed null, and on an 
incoming raw reference method argument as a 
comparison with the managed null.  If the heap 
base is 4 GB aligned, then we can use a 4-byte 
comparison to directly compare any two 
references, and perform a null check by comparing 
with 0.  Otherwise, a comparison of two references 
may have to first uncompress one of them. 

• Reassociation of address expressions: Computa-
tion of the address of a field or array element given 
a compressed object reference Rcomp, involves two 
additions: ((Rcomp + heap_base) + offset). This ex-
pression may be reassociated and computed as 
(Rcomp + (heap_base + offset)) if offset is available 
before the compressed reference.  In the case of an 
object field, offset and heap_base are both com-
pile-time constants and (offset + heap_base) can be 
precomputed. Even for a non-constant offset such 
as an array element, if the same element of multi-
ple objects is accessed, the (offset + heap_base) 
subexpression is common and should be precom-
puted. On the other hand, if multiple fields of the 
same object are accessed the decompressed refer-
ence (Rcomp + heap_base) is a common subexpres-
sion. The StarJIT compiler used to generate the 
experimental results presented in the next section 
does reassociation for object field accesses only. 
Additionally it performs local CSE of the decom-
pression arithmetic (Rcomp + heap_base). 

• Reference compression optimization: JIT gener-
ated code must compress a raw reference before 
storing it into the heap. Compression of a reference 
involves subtracting heap_base from the reference.  
If heap_base is 4 GB aligned, however, its lower 
32 bits are 0 and this operation is equivalent to 
masking off the top 32 bits. In the IPF architecture, 
a raw reference in a register can be stored with a 4-
byte store, which just saves the lower 32 bits, so 
the compression operation is unnecessary.  

• Materializing heap base: Since heap_base is a 
commonly used run-time constant, it should be 
subject to CSE. Since this is a global constant 
(across both VM and JIT-generated code), we con-
sidered the benefit of dedicating a register to hold 
this value. This way heap_base does not need to be 
put into a register upon each method entry, al-
though this may hurt register allocation, and after 
any native code the VM must restore the register 
contents.  We see some net benefit in our experi-
ments below.  

Reference compression also affects enumeration of 
live references by the JIT to the GC. The JIT must report 
whether references that are live at a garbage collection 
point are compressed or raw, so the GC can update refer-
ences to any moved objects appropriately. It is a simple 

matter to store this additional information along with the 
live reference bookkeeping, so it can be used at enumera-
tion time. 

4.  Experimental Results 

 To demonstrate the benefit of our compression tech-
niques, we give performance measurements for several 
benchmark applications with different ORP configura-
tions. These numbers were taken on a 4-processor, 1.5 
GHz Itanium® 2 machine with 6 MB L3 cache, 16 GB 
physical memory, and running Windows Server 2003, 64-
bit edition. We measured performance on the seven com-
ponent applications of SPEC JVM98 [4] as well as the 
SPEC JBB2000 [3] benchmark. Our techniques result in 
as much as 68% speedup for one of the SPEC JVM98 
applications, and 12.7% for SPEC JBB2000. We consid-
ered the following ORP configurations. All configurations 
except the baseline include the first three optimizations 
described in Section 3.3. “load-store forwarding”, “null 
checks and reference comparisons”, and “reassociation of 
address expressions”. 

• Baseline: Neither object headers nor references are 
compressed. 

• Compressed headers: Only object headers are 
compressed. 

• Compressed references: Only references within 
the heap are compressed. This configuration also 
uses the “reference compression optimization” 
from Section 3.3.  

• Both: Both object headers and references are com-
pressed. This configuration also uses the “refer-
ence compression optimization”. 

• Both, heap base in register: The Both configura-
tion is used; however, the VM ensures that the 
heap base is always stored in a specific register 
when executing JIT-compiled code. This is the 
“materializing heap base” optimization described 
in Section 3.3. This configuration also uses the 
“reference compression optimization”. 

• Both, unaligned heap base: The Both configura-
tion is used; however, the GC forces the heap to be 
allocated on other than a 4 GB boundary (normally 
the GC succeeds in acquiring a 4 GB aligned 
heap). This prevents the JIT from using the “refer-
ence compression optimization”, most likely lead-
ing to less efficient code. 

4.1.  SPEC JVM98 

The first set of results is for the SPEC JVM98 bench-
mark suite using a 96 MB heap. Figure 4 shows the 
speedup over the baseline configuration. Positive values 
indicate better performance than the baseline. The results 
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Figure 4: SPEC JVM98 performance relative to base configuration 
 

 
show as much as 68% speedup (for db using both com-
pressed headers and references), and no more than a 3% 
slowdown (for mpegaudio running compressed references 
alone). 

Note that compressed headers almost always result in 
higher performance. This is because adding the vtable 
base can almost always be folded into other vtable ad-
dress calculations., as discussed in Section 2.2.  

Both compressed headers and compressed references 
dramatically improve db’s performance. We have seen 
that db’s performance is heavily influenced by cache size; 
pointer compression reduces the average object size, ef-
fectively decreasing the working set size. 

Most other SPEC JVM98 applications improved be-
tween 4 and 10%. However, compress and mpegaudio 
slowed slightly because they have fewer pointer-based 
data structures. For these applications, our compression 
techniques save less memory and the overhead outweighs 
any gains. Neither materializing the heap base nor requir-
ing a 4 GB aligned heap affected performance signifi-
cantly, given an experimental noise margin of +/-1%. In 
general, SPEC JVM98 models client-side applications, 
which do not typically require significant amounts of 
memory and therefore benefit less from our techniques. 

4.2.  SPEC JBB2000 

SPEC JBB2000 is designed to model server applica-
tions, which are more likely to represent the applications 
run on Itanium® 2 machines. We ran the benchmark with 
each ORP configuration using a 4 GB heap. In addition to 

comparing the six different ORP configurations, we used 
EMON 7.0 to probe the Itanium® 2 processor’s perform-
ance counter registers [20] for detailed stall cycle infor-
mation. Figure 5 shows the SPEC JBB2000 speedup over 
the base configuration. Compressed headers improve per-
formance by 5.5%, compressed references by 6.5%, and 
the combination by 11.5%. The “materializing heap base 
optimization” increases the speedup to 12.7%. The appar-
ent small improvement from using an unaligned heap 
base is unexpected but within a +/-1% experimental noise 
margin. The Itanium® 2 processor’s performance count-
ers allow us to classify every execution cycle as either 
useful work (“unstalled cycles”) or stalled cycles 
(“stalls”). Since the Itanium® 2 has an in-order microar-
chitecture, the stalls are precise events. The most impor-
tant stalls are: 

• Memory dependency stalls: These result from 
cache misses. 

• L1D pipeline stalls: These primarily result from 
DTLB misses. 

• Front-end stalls: These result from instruction 
cache and ITLB misses. 

• Branch misprediction stalls. 
We measured and classified the stalls for each ORP 

configuration. Since SPEC JBB2000 is a throughput-
oriented benchmark, we normalized the stall counts for 
each test by the throughput to get per-transaction stall 
counts. We then compared each set of normalized counts 
to the baseline counts, to understand the effect of com-
pression on overall program behavior. 
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Figure 5: SPEC JBB2000 performance relative to base configuration 
 

Figure 6 shows the reduction in cycles per transac-
tion for each ORP configuration. Negative values indi-
cate the cycles in these categories increased; there is an 
overall performance improvement as long as there is a 
net positive value, indicating a net cycle reduction. By 
far the largest reason for the performance improvement 
is a reduction in memory dependency stalls, followed by 
L1D pipeline stalls. This is a direct result of reducing 
object sizes: smaller footprints mean fewer cache misses 
and less opportunity for DTLB misses. The increase in 

unstalled cycles for the compressed references configu-
ration is expected from the compression/decompression 
operations introduced. Overall, there are some minor 
changes to front-end and miscellaneous stall cycles. 
When multiple stalls occur in a cycle, the cycle is attrib-
uted to one stall category based on a predetermined pri-
ority ordering. In general the shifts in front-end and 
miscellaneous stalls are attributed to their being exposed 
when other higher priority stalls (mostly memory de-
pendencies) disappear. 

Figure 6: Reduction in cycles per SPEC JBB2000 transaction 
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  Reduction in heap space allocated Reduction in GCs 
Compressed headers 14.4% 13.2% 
Compressed references 13.4% 14.2% 
Both 27.3% 25.4% 

Table 1: Reductions in heap space allocated and total GCs 

 
 
Table 1 illustrates the reduction in heap space allo-

cated and the resulting decrease in full GCs. We only 
consider three configurations plus the base, ignoring 
“heap base in register” and “unaligned heap base” be-
cause those options have no effect on object size. These 
reductions further show the impact of pointer compres-
sion: because compression reduces the object footprint, 
less memory must be allocated. This causes the heap to 
fill less quickly, which in turn reduces the need for GCs. 
While not measured for this paper, the reduction in allo-
cated heap space means that running ORP with pointer 
compression requires a smaller heap to obtain the same 
performance as running without compression. 

5.  Related work 

Supporting multiple pointer sizes has been consid-
ered before by teams porting code to architectures with 
larger pointer sizes. Reducing object size in Java and 
similar languages has also been considered. To our 
knowledge, the two topics have not previously been com-
bined. 

In [13], Mogul, et al., studied the effects of using 64-
bit pointers for programs that ran on 32-bit systems. They 
compared C programs on a Digital Alpha system; the 
architecture simply zero-extended 32-bit pointers to 64-
bits. The code was unchanged, so only the data size was 
affected. They found that, while performance was often 
unaffected by larger pointers, some programs had much 
lower performance if, for example, their working set no 
longer fit in the L2 cache. If the working set was too large 
for the L2 cache using either size, the performance differ-
ence was much smaller. Similar effects were seen for 
each cache level, TLB faults, and paging. Further infor-
mation on Digital’s 32-bit to 64-bit address transition 
appears in [16][17]. 

Bacon, et al., [11] compared several schemes to re-
duce Java object size by shrinking object header fields. 
They describe several methods (related to our vtable 
pointer compression) to reduce storage for vtable point-
ers. If certain bits of these in all object headers are con-
stant, they “steal” those bits to store other information 
(e.g., GC state). This did not hurt performance, perhaps 
because vtable decoding can be overlapped with other 

operations on a multiple-issue processor. Our compressed 
vtable pointer scheme could be viewed as stealing 32 bits 
to pack the rest of the object header into 64 bits. We 
might compress headers further by stealing more bits and 
using other of their techniques, but we 64-bit align our 
object fields for better memory access performance. They 
also considered saving space with an index into a table of 
vtable pointers, but found this significantly hurt perform-
ance. Shuf, et al., [19] proposes vtable compression to a 
4-bit index for the most common types; they show a space 
improvement, but omit other performance data.  

Ananian and Rinard [12] describe additional tech-
niques for reducing Java memory use. They use the index 
into a vtable pointer table scheme, as well as a number of 
other techniques. They use off-line program analysis to 
eliminate unused fields and bits of fields that are run-time 
constants, specialize classes and methods to increase the 
number of such fields, and reorder fields to improve ob-
ject layout.  Chen, et al., [14] focus on page-level com-
pression to reduce program working set size.  Dieckmann 
and Hölzle [15] did not try to optimize object size, but 
studied memory use in SPEC JVM98. They observed that 
object overhead can have a significant effect: there, one 
extra header word could increase allocation rate by about 
20%.  

A related technique is pointer swizzling [20][18], 
which can be used to support very large virtual memory 
spaces with smaller pointers. Pages from a large address 
space stored on, e.g., a disk, are mapped into a smaller 
addressable memory as needed. References in the large 
address space must be translated before use by translating, 
or swizzling, them into addresses in the smaller memory 

Hardware compression techniques compress cache 
[23][24][25] or DRAM [22] contents, increasing the ef-
fective capacity of these structures.  The software tech-
nique described in this paper compresses contents 
throughout the memory system; it not only increases the 
effective capacity of the cache and DRAM, but also im-
proves DTLB performance. Software compression lever-
ages metadata indicating which values are pointers and 
which prefix value is redundant across pointers. Software 
compression also eliminates the compression and decom-
pression latencies via scheduling and other optimizations.  
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6.  Conclusions 

This paper considers software techniques for pointer 
compression to improve Java performance on processors 
with 64-bit pointers. Our techniques include compressing 
both object headers and heap references. 

We compress object headers to 8 bytes by compress-
ing the 64-bit vtable pointer to a 32-bit offset into a mem-
ory region containing vtable structures. Because 
operations to decode the vtable offset can usually be over-
lapped or folded into other operations, this usually avoids 
decoding cost. 

Similarly, we compress heap references in memory 
from 64 bits to a 32-bit offset from the base of the gar-
bage-collected heap. While the concept is simple, we 
learned several lessons: the need for a special mapping for 
null references; that compiler optimizations are needed to 
reduce the cost of reference compression/decompression; 
and that garbage collection must support both compressed 
and raw pointers.   

We studied the performance impact of these tech-
niques on Java programs running on the ORP virtual ma-
chine on a 4-processor, 1.5 GHz Itanium® 2 machine 
with 16 GB memory. The two pointer compression tech-
niques improved performance of SPEC JVM98 bench-
marks overall. The improvements ranged from 68% on db 
to a 3% degradation on mpegaudio. For the SPEC 
JBB2000 benchmark, they improved the benchmark result 
by as much as 12% over a highly tuned baseline, and re-
duced heap space allocated by more than 27% and the 
number of garbage collections by 25%. We used the 
EMON 7.0 tool to examine performance counters and 
verified that memory dependence stalls, L1D pipeline 
stalls, and L3 cache misses were significantly reduced.  

From previous studies of C programs, we anticipated 
that compressing pointers would reduce object sizes and 
the program working set, and so improve performance by 
reducing cache misses and TLB misses. The performance 
benefit we obtained for Java was even greater than had 
been reported for C. In particular, the ability in a managed 
runtime environment to recognize and compress heap 
references provides additional opportunities to reduce 
space usage. We expect our results will extend to other 
64-bit processors and managed runtime environments. 
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