
Improving 64-Bit Java IPF Performance by
Compressing Heap References

Ali-Reza Adl-Tabatabai, Jay Bharadwaj, Michal Cierniak†, Marsha Eng,
Jesse Fang, Brian T. Lewis, Brian R. Murphy, and James M. Stichnoth

Microprocessor Technology Lab, Intel Corporation
†Microsoft Corporation

james.m.stichnoth@intel.com

Abstract
64-bit processor architectures like the Intel® Ita-

nium® Processor Family are designed for large applica-
tions that need large memory addresses. When running
applications that fit within a 32-bit address space, 64-bit
CPUs are at a disadvantage compared to 32-bit CPUs
because of the larger memory footprints for their data.
This results in worse cache and TLB utilization, and con-
sequently lower performance because of increased miss
ratios. This paper considers software techniques for vir-
tual machines that allow 32-bit pointers to be used on 64-
bit CPUs for managed runtime applications that do not
need the full 64-bit address space. We describe our
pointer compression techniques and discuss our experi-
ence implementing these for Java1 applications. In addi-
tion, we give performance results with our techniques for
both the SPEC JVM98 and SPEC JBB2000 benchmarks.
We demonstrate a 12% performance improvement on
SPEC JBB2000 and a reduction in the number of garbage
collections required for a given heap size.

1. Introduction

Processor architectures such as the Intel® Itanium®
Processor Family [8] (IPF) enable large applications (such
as enterprise applications) to use a 64-bit address space
instead of the traditional 32-bit address space. A well-
known drawback of 64-bit addressing is that pointer-
based data structures consume more memory than their
32-bit counterparts, and the application therefore loses
performance as a result of additional cache misses, TLB
faults, and paging [13]. The increased memory footprint
is especially troubling when running an application whose
memory requirements actually fit entirely within a 32-bit
address space, and yet the application is forced to pay the
price of wide pointers.

1 Other brands and names are the property of their respective own-
ers.

In this paper, we describe our experience with com-
pressing 64-bit pointers into 32 bits within the framework
of a Java virtual machine [5]. Java programs offer a key
advantage over arbitrary C programs in that pointers are
always distinguishable from non-pointers. This gives us
wide latitude in choosing a pointer compression scheme.
Furthermore, the compression can be performed com-
pletely within application software (i.e., the virtual ma-
chine) without depending on platform-specific hardware
or operating system features, making it more portable
across different architectures and operating systems.

1.1. Solution overview

We compress raw 64-bit pointers into 32 bits by rep-
resenting a pointer as an unsigned 32-bit offset from the
base of a contiguous memory region. We focus compres-
sion on pointers within the Java heap, because the vast
majority of memory in a typical Java application consists
of heap-allocated Java objects. The compressible pointers
within those Java objects consist of vtable pointers and
pointers to other Java objects. This means that a com-
pressed vtable pointer is represented as an offset into the
contiguous vtable area, and a compressed Java reference
pointer is represented as an offset into the contiguous Java
heap.

Before dereferencing a pointer loaded from the Java
heap the system must first decompress it by adding the
heap base address. Similarly, the system must compress a
pointer by subtracting the heap base address, before stor-
ing the lower 32 bits into the heap. Compression and de-
compression are the operations used to convert between
raw and compressed pointers.

Our compression technique is simple and straight-
forward. Its compression and decompression, however,
require additional instructions and also frequently extend
the critical path of some computations. When we started
this work it was unclear whether the improvement in
memory stalls would outweigh this overhead. Our results

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 2

show this is indeed true and that there is a significant im-
provement in performance across a range of benchmarks.

Most 64-bit architectures (including the IPF) can
support 32-bit applications directly. However, our com-
pression technique allows a virtual machine (VM) to run
an application with the advantages of 32-bit addressing,
but with more than 32-bits of storage. In particular, since
the VM is running as a 64-bit application, it can use a full
4GB for the garbage-collected heap. It can allocate stor-
age for code, virtual method tables, and other VM-
allocated data structures outside of this 4GB space. Fur-
thermore, using the shifted offset technique described
below, the VM can expand the heap beyond the normal
32-bit addressing limit of 4GB.

Compression is not possible if there is so much data
that some compressed pointers do not fit in 32 bits. In this
event, the VM can revert to using uncompressed (raw)
pointers. Most VMs require that the maximum heap size
be specified at VM startup time (e.g., by using a com-
mand line argument), allowing the VM to decide whether
to use 32-bit or 64-bit raw pointers. If the specified size is
too large (e.g., more than 4GB), raw pointers will be used.

It is important to note that the solution we describe
represents a single point within a larger spectrum of im-
plementation choices. There are alternative ways to
choose which pointers are compressed and how they are
compressed. Broadly speaking, there are three categories
of locations where pointers reside:

• Per-instance locations: vtable pointers and the ref-
erences in both instance fields and array elements.

• Per-class locations: static fields, method pointers in
vtables, and some fields in internal VM data struc-
tures.

• Other locations: various internal VM data struc-
tures and temporary storage such as memory stack,
registers, and so on.

Our compressed pointer design focuses on per-
instance pointer fields within the Java heap, because of
their large contribution to the memory footprint of an
application. We also compress object references con-
tained in static fields because this allows the JIT to as-
sume that all reference fields are of uniform size.

Our design considers only one compressed pointer
representation (i.e., a 32-bit unsigned offset from the
memory base), but alternative representations could be
used as well. For example, pointers from one heap object
to another could be represented as a 32-bit signed offset
from the base of the first object. More complex functions
could be used if the memory region is not contiguous. In
addition, the minimum alignment requirement of all ob-
jects can be used to expand the 4 GB addressing limit by
treating compressed pointers as shifted offsets. This shift-
ing trick can be applied to compressed vtable pointers and
compressed reference pointers.

Each such extension to the basic design introduces its
own implementation complexities and performance con-
siderations, and could lead to either better or worse per-
formance. In this paper, however, we focus on the simple
compression scheme.

In addition to deciding which pointers to compress,
another system-wide decision has to be made: whether
reference arguments and return values should be passed
as compressed pointers or raw pointers. We chose to use
raw pointer arguments since we believed this to be more
efficient in JIT generated code. Furthermore, this mini-
mized changes in our system. However, using compressed
pointer arguments, or some combination of the two ap-
proaches, could also be considered.

1.2. System overview

Our solution has been implemented for Java [5] ap-
plications running on the ORP [1] virtual machine with
the StarJIT [2] just-in-time compiler. Our techniques ap-
ply equally well to Common Language Infrastructure
(CLI) [6] applications even though our current implemen-
tation supports only Java.

ORP is a high-performance VM that supports both
Java and CLI applications. It was designed with perform-
ance and flexibility as the main goals, and its flexibility
allows us to easily experiment with new optimizations.
ORP’s modular design allows us to dynamically load dif-
ferent garbage collectors (GCs) as well as multiple just-
in-time (JIT) compilers, the most recent of which is Star-
JIT. The default garbage collector used by ORP performs
parallel sliding compaction to maximize application
throughput, and typically accounts for only a small por-
tion (just 3% for SPEC JBB2000) of an application’s exe-
cution time. Using StarJIT and the default GC, ORP’s
performance is competitive with the best commercial Java
VMs.

The optimizing StarJIT compiler uses a single SSA-
based intermediate representation and global optimization
framework to compile both Java and CLI. It starts compi-
lation by translating bytecodes to the StarJIT intermediate
representation (STIR). After bytecode translation, Star-
JIT’s global optimizer operates on this representation to
perform mostly architecture-neutral classical optimiza-
tions (such as dead code elimination and redundancy
elimination), as well as optimizations targeted to type-
safe object-oriented programs (such as devirtualization
and run-time check elimination). STIR’s low-level opera-
tors and types expose finer-grain operations to global op-
timizations. Both STIR and the global optimizer directly
support compressed pointers. STIR includes operators to
manipulate compressed pointers, and types to represent
compressed pointer values. The global optimizer uses
optimizations that reduce in strength or height sequences
of operations on compressed pointers.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 3

After the global optimizer runs, StarJIT’s code gen-
erator for IPF lowers STIR instructions into IPF code
sequences, performs machine-level optimizations (such as
register allocation and scheduling), generates runtime
tables (such as those used for stack unwinding and excep-
tion handling), and emits the bits that the processor exe-
cutes. The code generator does trace scheduling; its
global scheduler schedules one trace at a time, and per-
forms register allocation, predication and speculation dur-
ing scheduling. Because the code generator runs after the
global optimizer, and on a lower-level program represen-
tation, it can further optimize code sequences involving
compressed references.

1.3. Organization of the paper

The remainder of the paper is organized as follows.
Section 2 describes in detail the issues of compressing the
object header, including the vtable pointer. Section 3 de-
scribes the more complex details of compressing refer-
ence pointers within the Java heap. Section 4 presents the
performance results across a set of benchmark applica-
tions. Section 5 describes related work, and Section 6
presents conclusions.

2. Object header compression

2.1. Overview

In ORP, every object includes a standard header,
which consists of a vtable pointer and a combined syn-
chronization/hashcode value. The vtable pointer normally
contains a raw pointer to a vtable structure. The synchro-
nization value is partitioned into 16 bits to hold the thread
ID of the current locker, 8 bits to hold the lock recursion
count, and 8 bits to hold the default hashcode. If the re-
cursion count overflows beyond 8 bits, the synchroniza-
tion value is treated as a link to a fatter lock structure.
This organization of the object header is fairly common
across commercial and research VMs[9][11].

On a system with 64-bit pointers, it is natural to allo-
cate 8 bytes for the vtable pointer. It is also convenient to
allocate 8 bytes for the synchronization value, so that the
virtual machine can assign object field offsets assuming
an initial 8-byte alignment. This yields a per-object over-
head of 16 bytes, compared to 8 bytes on a 32-bit system.

In the 64-bit implementation of ORP, we reduce the
overhead to 8 bytes per object by using only 4 bytes for

the vtable pointer and 4 bytes for the synchronization
value. Instead of being a raw pointer, the value in the
vtable slot is treated as an unsigned offset from the base
of the vtable area in memory. Figure 1 depicts the layout
of the object header for the raw and the compressed cases
on a 64-bit system. At ORP startup time, the VM allo-
cates a single contiguous chunk of memory for holding all
vtables. The vtable space must be contiguous, generally
meaning that the VM must put a bound at startup on the
amount of vtable space available. (If such a bound is un-
acceptable, there are ways to relax this requirement, but
that is beyond the scope of this paper.) The interface
function orp_get_vtable_base() provides a pointer to the
start of the vtable area. ORP guarantees that this is a con-
stant function, so the value can be cached by the GC and
emitted as a constant in JIT-generated code. The VM and
GC components access an object’s vtable information in
similar ways, and both are similarly modified to support
compressed object headers. Each time a vtable pointer is
loaded from an object and dereferenced, we instead load
the 32-bit value, decompress it, then dereference the re-
sulting 64-bit pointer. Decompressing a 32-bit vtable
pointer involves zero-extending it to 64 bits and adding
the 64-bit value orp_get_vtable_base(). On many proces-
sor architectures including the IPF, the zero extension
operation can be folded into the 32-bit load instruction.

During object allocation, the vtable pointer is set by
subtracting orp_get_vtable_base() from the raw vtable
address and storing the lower 32 bits into the object. Con-
verting from raw to compressed vtable references may
add an additional operation to the critical path, but in our
experience, relatively few such operations are performed
by the VM and GC components so the performance im-
pact is not noticeable.

It is fairly common for a garbage collector (particu-
larly a stop-the-world collector) to temporarily hijack part
of the object header during garbage collection and use it
for GC purposes. For example, it might overwrite an ob-
ject’s synchronization value with a forwarding pointer if
the object is being moved. In this example, if the syn-
chronization value is compressed to 32 bits, then the for-
warding pointer can be treated as a compressed reference,
using techniques described in Section 1.1.

Using similar techniques, the vtable pointer in an ob-
ject could be narrowed even further, to 24 or perhaps 16
bits. If all vtables are aligned at 64-byte boundaries, then
a 16-bit vtable pointer value can allow up to 4MB of total
vtable space, which is more than adequate in our experi-
ence. However, this introduces an additional shift opera-

Figure 1: Compressing the object header

Vtable pointer
(unused) RecursionThread ID Hashcode

Vtable offset
RecursionThread ID Hashcode

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 4

tion into the critical path when dereferencing an object’s
vtable. Furthermore, to have any impact on the live heap
size, the application must have classes that not only have
many instances, but also have 1- or 2-byte fields, such
that moving a field into the free space in the object header
causes the aligned object size to decrease. To illustrate,
Java’s String class contains only reference and 32-bit in-
teger fields, so it would not benefit from shrinking its
header by an additional 2 bytes.

2.2. JIT implementation and issues

The JIT-generated code uses the vtable pointer in two
ways: for exact type checks and for dereferencing the

vtable (e.g., for virtual method dispatch). An exact type
check tests an object’s vtable pointer against a known
constant value as a condition for executing an optimized
control path. With compressed vtable pointers, the con-
stant value is guaranteed to fit within 32 bits, and in prac-
tice the value usually fits within fewer bits. The code
sequence for an exact type check on IPF is shown in Fig-
ure 2. With a 22-bit or smaller vtable offset, the sequence
takes one fewer syllable on IPF when vtables are com-
pressed.

The code sequence for dereferencing an object’s

vtable typically loads the 64-bit vtable pointer from the
object, adding a constant (the virtual method’s offset in
the vtable), and dereferencing the result. When using
compressed vtable pointers the address of the base of
vtables (orp_get_vtable_base()) needs to be added to the

compressed vtable pointer as well. Since in ORP this base
address is a JIT-time constant, we can precompute its
addition to the virtual method offset. This precomputation
can be done ahead of the load of the vtable. The code
sequence for IPF is shown in Figure 3.

3. Reference compression

This section describes the key implementation details
of compressing references in ORP. As previously dis-
cussed, compression is applied to object references within
Java objects and arrays, as well as static reference fields.
Other references, such as those within argument lists and
vtables, are not compressed. The following sections refer
to the value heap_base, which ORP exposes through the
interface function orp_heap_base_address(). ORP guar-
antees that this function returns a constant value during
each ORP execution.

3.1. Null pointer representation

A key issue in compressing references is how to rep-
resent a null reference, both in compressed and raw form.
To motivate the discussion, we define three types of null
values:

• Managed null: the representation of a null value
used in managed (i.e., JIT-generated) code.

• Compressed null: the compressed representation
of a managed null value.

• Platform null: the representation of a null value
used in native code.

add rOff = MethodOffset, rVtableBase
ld4 rVt = [rObj] // load vtable
add rMethodAddr = rOff, rVt
call [rMethodAddr]

ld4 rVt = [rObj] // load vtable
add rMethodAddr = MethodOffset, rVt
call [rMethodAddr]

Mov ry = 22BitVtableOffset
ld4 rx = [rObj] // load vtable
cmp4.eq pa,p0 = rx, 22BitVtableOffset

movl ry = VtableAddress
ld4 rx = [rObj] // load vtable
cmp4.eq pa,p0 = rx, ry

a. vtable compression enabled b. vtable compression disabled

a. vtable compression enabled b. vtable compression disabled

Figure 2: IPF instruction sequence for exact type check

Figure 3: IPF instruction sequence for virtual method dispatch

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 5

On a 64-bit system without compressed references,
both the managed null and the platform null are usually a
64-bit zero value, and the compressed null is not used.

When using compressed references, the simple com-
pression method of subtracting heap_base assumes that
raw reference pointers fall within the contiguous address
range [heap_base..heap_base+size-1]. However, this as-
sumption is invalid if the managed null is represented by
a 64-bit pattern of zeros, so the resulting compressed ref-
erence does not fit within 32 bits.

A practical choice of null representations should have
the following properties:

• The compressed null should be a 32-bit pattern of
zeros, to simplify the object allocation sequence.
Most GC implementations clear the heap in large
chunks before object allocation, satisfying the Java
and CLI requirements that all object fields be ini-
tialized to 0 or null at allocation. If the compressed
null is a zero, the allocation sequence remains sim-
ple and fast.

• The platform null should not be changed, to avoid
major changes in native code (including VM and
GC code) that manipulates Java objects. Native
code is typically written assuming that null refer-
ences are represented by the platform null.

• The managed null representation should be com-
patible with the VM’s support for hardware null
pointer exceptions (if any).

To satisfy these properties, our solution uses
heap_base to represent a managed null. If references are
passed to or from native code (e.g. when invoking a na-
tive method or calling a VM runtime helper function), the
VM marshals the values and translates between the man-
aged null and the platform null. Such translations are rela-
tively rare, in comparison to calls between JIT-generated
methods. A minor consequence for the garbage collector
is that it must not allow heap_base to be the address of an
allocated object, so as not to conflict with the managed
null.

ORP does not currently support hardware null pointer
exceptions on IPF. StarJIT makes null pointer checks
explicit because it eases safety analysis, and it simplifies
speculative scheduling of load instructions above null
pointer checks. Nonetheless, it is straightforward to com-
bine hardware null pointer exceptions and compressed
heap references if the first few pages of the heap are
marked as unreadable and unwritable. If the application
attempts to access memory near the managed null ad-
dress, the virtual memory system will automatically catch
the error, and the VM can then throw a null pointer
exception.

Note that a managed null needs special treatment for
compressed references but not for compressed vtable
pointers. This is simply because a valid vtable pointer is
never null.

3.2. VM and GC implementation

To support compressed references, we modified the
VM and GC to convert between compressed and raw ref-
erences. We also changed null checks and other code that
depends on the representation of a managed null. While
numerous, these changes were straightforward except for
those that translate between managed and platform nulls
when transitioning to or from native code.

The garbage collector can support a 4GB-aligned
heap (the benefits of an aligned heap are discussed be-
low). Given a user-specified maximum heap size of M
bytes, the collector allocates from the operating system a
contiguous region of virtual address space of size M+4GB
(without actually committing the space), and then com-
mits an M-byte sub-region starting at a 4GB-aligned ad-
dress.

3.3. JIT implementation

The JIT-generated code needs to decompress a refer-
ence to an object that is loaded from the heap before ac-
cessing the vtable or any field of that object. If the
reference is instead passed as an argument or a return
value from one method to another, we have chosen with
our calling convention to decompress the reference prior
to passing it into or out of a method. The method receiv-
ing a reference often immediately accesses its vtable
which, being at offset 0 from the base of the object, is
directly addressed by a raw reference. In such situations it
is easier to hide the latency of the decompression in the
method that passes the argument rather than in the method
that receives it.

To get net performance gains from reference com-
pression, we found it crucial to optimize unnecessary
compression and decompression to reduce the critical
path and code size, as described below. It is important to
consider the phase ordering between classical optimiza-
tions and the pass that lowers the compres-
sion/decompression arithmetic to ensure that they are
optimized.

• Load-store forwarding: If after loading a refer-
ence from the heap, it is later stored to the heap,
the loaded compressed form should be directly
used in the store. If the sole use of the loaded refer-
ence is the store to the heap, any inserted decom-
pression can be eliminated as dead code.

• Null checks and reference comparisons: A null
reference check can be performed as a comparison
of the compressed reference to the compressed
null, or as a comparison of the raw reference to the
managed null. If both forms of the reference are
available, then the one available first should be
used. For example, the null check on a reference
loaded from the heap may be better done as a com-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 6

parison with the compressed null, and on an
incoming raw reference method argument as a
comparison with the managed null. If the heap
base is 4 GB aligned, then we can use a 4-byte
comparison to directly compare any two
references, and perform a null check by comparing
with 0. Otherwise, a comparison of two references
may have to first uncompress one of them.

• Reassociation of address expressions: Computa-
tion of the address of a field or array element given
a compressed object reference Rcomp, involves two
additions: ((Rcomp + heap_base) + offset). This ex-
pression may be reassociated and computed as
(Rcomp + (heap_base + offset)) if offset is available
before the compressed reference. In the case of an
object field, offset and heap_base are both com-
pile-time constants and (offset + heap_base) can be
precomputed. Even for a non-constant offset such
as an array element, if the same element of multi-
ple objects is accessed, the (offset + heap_base)
subexpression is common and should be precom-
puted. On the other hand, if multiple fields of the
same object are accessed the decompressed refer-
ence (Rcomp + heap_base) is a common subexpres-
sion. The StarJIT compiler used to generate the
experimental results presented in the next section
does reassociation for object field accesses only.
Additionally it performs local CSE of the decom-
pression arithmetic (Rcomp + heap_base).

• Reference compression optimization: JIT gener-
ated code must compress a raw reference before
storing it into the heap. Compression of a reference
involves subtracting heap_base from the reference.
If heap_base is 4 GB aligned, however, its lower
32 bits are 0 and this operation is equivalent to
masking off the top 32 bits. In the IPF architecture,
a raw reference in a register can be stored with a 4-
byte store, which just saves the lower 32 bits, so
the compression operation is unnecessary.

• Materializing heap base: Since heap_base is a
commonly used run-time constant, it should be
subject to CSE. Since this is a global constant
(across both VM and JIT-generated code), we con-
sidered the benefit of dedicating a register to hold
this value. This way heap_base does not need to be
put into a register upon each method entry, al-
though this may hurt register allocation, and after
any native code the VM must restore the register
contents. We see some net benefit in our experi-
ments below.

Reference compression also affects enumeration of
live references by the JIT to the GC. The JIT must report
whether references that are live at a garbage collection
point are compressed or raw, so the GC can update refer-
ences to any moved objects appropriately. It is a simple

matter to store this additional information along with the
live reference bookkeeping, so it can be used at enumera-
tion time.

4. Experimental Results

 To demonstrate the benefit of our compression tech-
niques, we give performance measurements for several
benchmark applications with different ORP configura-
tions. These numbers were taken on a 4-processor, 1.5
GHz Itanium® 2 machine with 6 MB L3 cache, 16 GB
physical memory, and running Windows Server 2003, 64-
bit edition. We measured performance on the seven com-
ponent applications of SPEC JVM98 [4] as well as the
SPEC JBB2000 [3] benchmark. Our techniques result in
as much as 68% speedup for one of the SPEC JVM98
applications, and 12.7% for SPEC JBB2000. We consid-
ered the following ORP configurations. All configurations
except the baseline include the first three optimizations
described in Section 3.3. “load-store forwarding”, “null
checks and reference comparisons”, and “reassociation of
address expressions”.

• Baseline: Neither object headers nor references are
compressed.

• Compressed headers: Only object headers are
compressed.

• Compressed references: Only references within
the heap are compressed. This configuration also
uses the “reference compression optimization”
from Section 3.3.

• Both: Both object headers and references are com-
pressed. This configuration also uses the “refer-
ence compression optimization”.

• Both, heap base in register: The Both configura-
tion is used; however, the VM ensures that the
heap base is always stored in a specific register
when executing JIT-compiled code. This is the
“materializing heap base” optimization described
in Section 3.3. This configuration also uses the
“reference compression optimization”.

• Both, unaligned heap base: The Both configura-
tion is used; however, the GC forces the heap to be
allocated on other than a 4 GB boundary (normally
the GC succeeds in acquiring a 4 GB aligned
heap). This prevents the JIT from using the “refer-
ence compression optimization”, most likely lead-
ing to less efficient code.

4.1. SPEC JVM98

The first set of results is for the SPEC JVM98 bench-
mark suite using a 96 MB heap. Figure 4 shows the
speedup over the baseline configuration. Positive values
indicate better performance than the baseline. The results

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Figure 4: SPEC JVM98 performance relative to base configuration

show as much as 68% speedup (for db using both com-
pressed headers and references), and no more than a 3%
slowdown (for mpegaudio running compressed references
alone).

Note that compressed headers almost always result in
higher performance. This is because adding the vtable
base can almost always be folded into other vtable ad-
dress calculations., as discussed in Section 2.2.

Both compressed headers and compressed references
dramatically improve db’s performance. We have seen
that db’s performance is heavily influenced by cache size;
pointer compression reduces the average object size, ef-
fectively decreasing the working set size.

Most other SPEC JVM98 applications improved be-
tween 4 and 10%. However, compress and mpegaudio
slowed slightly because they have fewer pointer-based
data structures. For these applications, our compression
techniques save less memory and the overhead outweighs
any gains. Neither materializing the heap base nor requir-
ing a 4 GB aligned heap affected performance signifi-
cantly, given an experimental noise margin of +/-1%. In
general, SPEC JVM98 models client-side applications,
which do not typically require significant amounts of
memory and therefore benefit less from our techniques.

4.2. SPEC JBB2000

SPEC JBB2000 is designed to model server applica-
tions, which are more likely to represent the applications
run on Itanium® 2 machines. We ran the benchmark with
each ORP configuration using a 4 GB heap. In addition to

comparing the six different ORP configurations, we used
EMON 7.0 to probe the Itanium® 2 processor’s perform-
ance counter registers [20] for detailed stall cycle infor-
mation. Figure 5 shows the SPEC JBB2000 speedup over
the base configuration. Compressed headers improve per-
formance by 5.5%, compressed references by 6.5%, and
the combination by 11.5%. The “materializing heap base
optimization” increases the speedup to 12.7%. The appar-
ent small improvement from using an unaligned heap
base is unexpected but within a +/-1% experimental noise
margin. The Itanium® 2 processor’s performance count-
ers allow us to classify every execution cycle as either
useful work (“unstalled cycles”) or stalled cycles
(“stalls”). Since the Itanium® 2 has an in-order microar-
chitecture, the stalls are precise events. The most impor-
tant stalls are:

• Memory dependency stalls: These result from
cache misses.

• L1D pipeline stalls: These primarily result from
DTLB misses.

• Front-end stalls: These result from instruction
cache and ITLB misses.

• Branch misprediction stalls.
We measured and classified the stalls for each ORP

configuration. Since SPEC JBB2000 is a throughput-
oriented benchmark, we normalized the stall counts for
each test by the throughput to get per-transaction stall
counts. We then compared each set of normalized counts
to the baseline counts, to understand the effect of com-
pression on overall program behavior.

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%

compress jess db mpegaudio mtrt jack javac

Sp
ee

du
p

O
ve

r B
as

e

Compressed
headers

Compressed
references

Both

Both, heap base in
register

Both, unaligned
heap base

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Figure 5: SPEC JBB2000 performance relative to base configuration

Figure 6 shows the reduction in cycles per transac-
tion for each ORP configuration. Negative values indi-
cate the cycles in these categories increased; there is an
overall performance improvement as long as there is a
net positive value, indicating a net cycle reduction. By
far the largest reason for the performance improvement
is a reduction in memory dependency stalls, followed by
L1D pipeline stalls. This is a direct result of reducing
object sizes: smaller footprints mean fewer cache misses
and less opportunity for DTLB misses. The increase in

unstalled cycles for the compressed references configu-
ration is expected from the compression/decompression
operations introduced. Overall, there are some minor
changes to front-end and miscellaneous stall cycles.
When multiple stalls occur in a cycle, the cycle is attrib-
uted to one stall category based on a predetermined pri-
ority ordering. In general the shifts in front-end and
miscellaneous stalls are attributed to their being exposed
when other higher priority stalls (mostly memory de-
pendencies) disappear.

Figure 6: Reduction in cycles per SPEC JBB2000 transaction

-100

0

100

200

300

400

500

600

700

800

Compressed
headers

Compressed
references

Both Both, heap base
in register

Both, unaligned
heap base

Th
ou

sa
nd

s
R

ed
uc

tio
n

in
 C

yc
le

s
pe

r T
ra

ns
ac

tio
n

Memory
Dependency
Stalls

L1D Pipeline
Stalls

Front-End Stalls

Branch
Misprediction
Stalls

Miscellaneous
Stalls

Unstalled Cycles

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%
14%

Compressed
headers

Compressed
references

Both Both, heap base
in register

Both, unaligned
heap base

Sp
ee

du
p

O
ve

r B
as

e

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 9

 Reduction in heap space allocated Reduction in GCs
Compressed headers 14.4% 13.2%
Compressed references 13.4% 14.2%
Both 27.3% 25.4%

Table 1: Reductions in heap space allocated and total GCs

Table 1 illustrates the reduction in heap space allo-

cated and the resulting decrease in full GCs. We only
consider three configurations plus the base, ignoring
“heap base in register” and “unaligned heap base” be-
cause those options have no effect on object size. These
reductions further show the impact of pointer compres-
sion: because compression reduces the object footprint,
less memory must be allocated. This causes the heap to
fill less quickly, which in turn reduces the need for GCs.
While not measured for this paper, the reduction in allo-
cated heap space means that running ORP with pointer
compression requires a smaller heap to obtain the same
performance as running without compression.

5. Related work

Supporting multiple pointer sizes has been consid-
ered before by teams porting code to architectures with
larger pointer sizes. Reducing object size in Java and
similar languages has also been considered. To our
knowledge, the two topics have not previously been com-
bined.

In [13], Mogul, et al., studied the effects of using 64-
bit pointers for programs that ran on 32-bit systems. They
compared C programs on a Digital Alpha system; the
architecture simply zero-extended 32-bit pointers to 64-
bits. The code was unchanged, so only the data size was
affected. They found that, while performance was often
unaffected by larger pointers, some programs had much
lower performance if, for example, their working set no
longer fit in the L2 cache. If the working set was too large
for the L2 cache using either size, the performance differ-
ence was much smaller. Similar effects were seen for
each cache level, TLB faults, and paging. Further infor-
mation on Digital’s 32-bit to 64-bit address transition
appears in [16][17].

Bacon, et al., [11] compared several schemes to re-
duce Java object size by shrinking object header fields.
They describe several methods (related to our vtable
pointer compression) to reduce storage for vtable point-
ers. If certain bits of these in all object headers are con-
stant, they “steal” those bits to store other information
(e.g., GC state). This did not hurt performance, perhaps
because vtable decoding can be overlapped with other

operations on a multiple-issue processor. Our compressed
vtable pointer scheme could be viewed as stealing 32 bits
to pack the rest of the object header into 64 bits. We
might compress headers further by stealing more bits and
using other of their techniques, but we 64-bit align our
object fields for better memory access performance. They
also considered saving space with an index into a table of
vtable pointers, but found this significantly hurt perform-
ance. Shuf, et al., [19] proposes vtable compression to a
4-bit index for the most common types; they show a space
improvement, but omit other performance data.

Ananian and Rinard [12] describe additional tech-
niques for reducing Java memory use. They use the index
into a vtable pointer table scheme, as well as a number of
other techniques. They use off-line program analysis to
eliminate unused fields and bits of fields that are run-time
constants, specialize classes and methods to increase the
number of such fields, and reorder fields to improve ob-
ject layout. Chen, et al., [14] focus on page-level com-
pression to reduce program working set size. Dieckmann
and Hölzle [15] did not try to optimize object size, but
studied memory use in SPEC JVM98. They observed that
object overhead can have a significant effect: there, one
extra header word could increase allocation rate by about
20%.

A related technique is pointer swizzling [20][18],
which can be used to support very large virtual memory
spaces with smaller pointers. Pages from a large address
space stored on, e.g., a disk, are mapped into a smaller
addressable memory as needed. References in the large
address space must be translated before use by translating,
or swizzling, them into addresses in the smaller memory

Hardware compression techniques compress cache
[23][24][25] or DRAM [22] contents, increasing the ef-
fective capacity of these structures. The software tech-
nique described in this paper compresses contents
throughout the memory system; it not only increases the
effective capacity of the cache and DRAM, but also im-
proves DTLB performance. Software compression lever-
ages metadata indicating which values are pointers and
which prefix value is redundant across pointers. Software
compression also eliminates the compression and decom-
pression latencies via scheduling and other optimizations.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 10

6. Conclusions

This paper considers software techniques for pointer
compression to improve Java performance on processors
with 64-bit pointers. Our techniques include compressing
both object headers and heap references.

We compress object headers to 8 bytes by compress-
ing the 64-bit vtable pointer to a 32-bit offset into a mem-
ory region containing vtable structures. Because
operations to decode the vtable offset can usually be over-
lapped or folded into other operations, this usually avoids
decoding cost.

Similarly, we compress heap references in memory
from 64 bits to a 32-bit offset from the base of the gar-
bage-collected heap. While the concept is simple, we
learned several lessons: the need for a special mapping for
null references; that compiler optimizations are needed to
reduce the cost of reference compression/decompression;
and that garbage collection must support both compressed
and raw pointers.

We studied the performance impact of these tech-
niques on Java programs running on the ORP virtual ma-
chine on a 4-processor, 1.5 GHz Itanium® 2 machine
with 16 GB memory. The two pointer compression tech-
niques improved performance of SPEC JVM98 bench-
marks overall. The improvements ranged from 68% on db
to a 3% degradation on mpegaudio. For the SPEC
JBB2000 benchmark, they improved the benchmark result
by as much as 12% over a highly tuned baseline, and re-
duced heap space allocated by more than 27% and the
number of garbage collections by 25%. We used the
EMON 7.0 tool to examine performance counters and
verified that memory dependence stalls, L1D pipeline
stalls, and L3 cache misses were significantly reduced.

From previous studies of C programs, we anticipated
that compressing pointers would reduce object sizes and
the program working set, and so improve performance by
reducing cache misses and TLB misses. The performance
benefit we obtained for Java was even greater than had
been reported for C. In particular, the ability in a managed
runtime environment to recognize and compress heap
references provides additional opportunities to reduce
space usage. We expect our results will extend to other
64-bit processors and managed runtime environments.

7. References

[1] M. Cierniak, M. Eng, N. Glew, B. Lewis, and
J. Stichnoth. The Open Runtime Platform:
A Flexible High-Performance Managed Runtime Environ-
ment. Intel Technology Journal, February 2003.
http://developer.intel.com/technology/itj/2003/volume07iss
ue01

[2] A. Adl-Tabatabai, J. Bharadwaj, D-Y. Chen, A. Ghuloum,
V. Menon, B. Murphy, M. Serrano, and T. Shpeisman. The

StarJIT Compiler: A Dynamic Compiler for Managed Run-
time Environments. Intel Technology Journal, February
2003.
http://developer.intel.com/technology/itj/2003/volume07iss
ue01

[3] SPEC Java Business Benchmark 2000. Standard Perform-
ance Evaluation Corporation.

[4] SPEC JVM98. Standard Performance Evaluation Corpora-
tion.

[5] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification, Second Edition, Addison-Wesley, 1999.

[6] Common Language Infrastructure, Standard ECMA-335.
ECMA, December 2002. http://www.ecma-
international.org/publications/Standards/ecma-335.htm.

[7] Intel® Architecture Software Developer's Manual, Intel
Corp., 1997.

[8] Intel® Itanium® Architecture Software Developer’s Man-
ual, rev. 2.1. Intel Corp., October, 2002.

[9] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,
M. Serrano, V. Sreedhar, H. Srinivasan, and J. Whaley.
The Jalapeño dynamic optimizing compiler for Java. Pro-
ceedings of the ACM 1999 Java Grande Conference, 1999,
pp. 129-141.

[10] P. Briggs and K. D. Cooper. Effective Partial Redundancy
Elimination. Proceedings of the ACM SIGPLAN’94 Con-
ference on Programming Language Design and Implemen-
tation (PLDI), Orlando, Florida, June 20-24, 1994.
SIGPLAN Notices 29(6) (June, 1994), pp. 159-170.

[11] D. F. Bacon, S. J. Fink, and D. Grove. Space- and Time-
Efficient Implementation of the Java Object Model. B.
Magnusson (Ed.): ECOOP 2002 – Object-Oriented Pro-
gramming, 16th European Conference, Malaga, Spain, June
10-14, 2002, Proceedings. Lecture Notes in Computer Sci-
ence 2374, Springer, 2002, pp. 111-132.

[12] C. S. Ananian and M. Rinard. Data Size Optimizations for
Java Programs. Proceedings of the 21003 Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES’03). San Diego, California, USA, June 11-13,
2003, pp. 59-68.

[13] J. C. Mogul, J. F. Bartlett, R. N. Mayo, A. Srivastava.
Performance Implications of Multiple Pointer Sizes. In
USENIX 1995 Technical Conference on UNIX and Ad-
vanced Computing Systems (USENIX 1995), New Orleans,
Louisiana, USA, January 16-20, 1995, pp 187-200.

[14] G. Chen, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, B.
Mathiske, and M. Wolczko. Heap Compression for Mem-
ory-Constrained Java Environments. To appear in 18th An-
nual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’03), Anaheim, California, October 26-30, 2003.

[15] S. Dieckmann and U. Hölzle. A Study of the Allocation
Behavior of the SPECjvm98 Java Benchmarks. In R.
Guerraoui (ed.), ECOOP’99 – Object-Oriented Program-
ming, 13th European Conference, Lisbon, Portugal, June
14-18, 1999, Proceedings. Lecture Notes in Computer Sci-
ence 1628, Springer, 1999, pp. 92-115.

[16] M. S. Harvey and L. S. Szubowics. Extending OpenVMS
for 64-bit Addressable Virtual Memory. Digital Technical
Journal 8(2), 1996, pp. 87-71.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 11

[17] T. R. Benson, K, L. Noel, R. E. Peterson. The OpenVMS
Mixed Pointer Size Environment. Digital Technical Jour-
nal 8(2),1996, pp. 72-82.

[18] P. R. Wilson. Operating System Support for Small Ob-
jects. In International Workshop on Object Orientation in
Operating Systems, pp. 80-86, Palo Alto, California, Octo-
ber, 1991.

[19] Y. Shuf, M. Gupta, R. Bordawekar, J. P. Singh. Exploiting
Prolific Types for Memory Management and Optimiza-
tions. In Proceedings of the 29th Annual ACM Symposium
on the Principles of Programming Languages (POPL
2002). Portland, Oregon, USA, January, 2002, pp. 295-306.

[20] P. Wilson and S. Kakkad. Pointer Swizzling at Page Fault
Time: Efficiently and Compatibly Supporting Huge Ad-
dress Spaces on Standard Hardware. In Proceedings of the
1992 IEEE International Workshop on Object Orientation
and Operating Systems (IWOOOS '92), Dourdan, France,
1992, pp 364-377.

[21] Intel® Itanium® 2 Processor Reference Manual for Soft-
ware Development and Optimization. Intel Corp.,
April 2003.
http://www.intel.com/design/itanium2/manuals/251110.ht
m.

[22] Tremaine, R., Franaszek P., Robinson, J., Schulz, C.,
Smith, T., Wazlowski, M., and Bland, P., “IBM Memory
Expansion Technology (MXT).” In IBM Journal of Re-
search and Development, Vol. 45, No. 2, march 2001.

[23] Lee, J.-S., Hong, W.-K., Kim, S.-D. “Design and Evalua-
tion of a Selective Compressed Memory System.” In Pro-
ceedings of the IEEE International Conference On
Computer Design, VLSI in Computers and Processors,
Austin, 1999.

[24] Yang, J., Zhang, Y., Gupta, R. “Frequent value compres-
sion in data caches.” In Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture,
2000.

[25] Zhang, Y., Yang, J., Gupta, R. “Frequent value locality and
Value-Centric Data Cache.” In Proceedings of the ninth in-
ternational conference on Architectural support for pro-
gramming languages and operating systems, Cambridge,
MA, 2000.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

