
Software-Controlled Operand-Gating

Ramon Canal1, Antonio González1,2, James E. Smith3

1Departament d´Arquitectura de
Computadors - Universitat
Politècnica de Catalunya
{rcanal,antonio}@ac.upc.es

2Intel Barcelona Research Center
Intel Labs – Universitat Politècnica
de Catalunya
antoniox.gonzalez@intel.com

3Department of Electrical and
Computing Engineering
University of Wisconsin-Madison
jes@ece.wisc.edu

Abstract
Operand gating is a technique for improving processor
energy efficiency by gating off sections of the data path
that are unneeded by short-precision (narrow) operands.
A method for implementing software-controlled power
gating is proposed and evaluated. The instruction set
architecture (ISA) is enhanced to include opcodes that
specify operand widths (if not already included in the ISA).
A compiler or a binary translator uses statically available
information to determine initial value ranges. The
technique is enhanced through a profile-based analysis
that results in the specialization of certain code regions for
a given value range. After the analysis, instruction
opcodes are assigned using the minimum required width.
To evaluate this technique the Alpha instruction set is
enhanced to include opcodes for 8, 16, and 32 bit
operands. Applying the proposed software technique to the
SpecInt95 benchmarks results in energy-delay2 savings of
14%. When combined with previously proposed hardware-
based techniques, the energy-delay2 benefit is 28%.

1. Introduction
Power consumption has become a critical design

consideration and is expected to be one of the most
important constraints for development of future
microprocessors. In current CMOS technology, most
energy consumption occurs when transistors switch or
when a memory access takes place [6]. In general,
dynamic energy consumption is proportional to the
switching activity. Thus, an important energy conservation
technique is to reduce switching activity by “gating off”
portions of logic and memory that are not required for
correct processing.

In recent research [2][12], it is proposed that certain
portions of functional units can be gated-off for short
precision operands. In particular, arithmetic only needs to
be performed on the numerically significant bits of
operands. Portions of arithmetic units operating on the
insignificant bits (typically leading ones or zeros) can be
gated off. In [9] this technique, operand gating, is
extended to all stages of the processor pipeline, including
buses, register files, and caches.

In this paper, we propose and study two software-based
approaches to operand gating, Value Range Propagation
and Value Range Specialization, that exhibit a different set
of hardware/software tradeoffs. It is assumed that the
instruction set architecture (ISA) contains opcodes that
specify operand lengths (e.g. load byte, add halfword).
This feature is already available in some conventional
instruction sets and could be added as an extension to
others. At compile time, or as part of static binary
translation, an enhanced version of value range
propagation is used to determine bounds on the useful
value ranges of all variables. Then, through proper opcode
assignment, only useful portions of data need to be
computed, communicated, and stored, thereby saving
power. This approach adds much less hardware complexity
than the previously proposed significance compression
methods, but requires static analysis by the compiler or
translator and may require additional instruction opcodes
to specify operand widths (depending on the base ISA).

In this work, a key distinction is made between
“useful” data widths and “conventional” data widths. In
the proposed software method, higher-level analysis of the
code can determine the number of bits that are actually
useful for determining the final program results. In some
cases this means that widths of intermediate values are
reduced by eliminating bits that strictly speaking are
significant, but which are unnecessary. For example, if the
last instruction of a chain of dependences is AND R1,
0xFF, R2 (i.e. R2←R1&0xFF), and the value of R1 is not
used anywhere else in the program, one can conclude that
only the least significant byte of R1 is needed, and thus the
chain of dependent instructions leading up to the AND
need to compute just one byte. By focusing on useful bits,
the software approach can potentially save more energy
than traditional value range propagation mechanisms.

Value Range Propagation (VRP) as just proposed is
similar in essence to previous proposals [5][13][18][20].
Our extensions include provisions for “useful” value
propagation. The useful value range concept was exploited
in [13] through the use of directives written in the program
rather than being derived from the program analysis as it is
done in this work. Budiu et al. [5] used “useful”
information on a per-bit basis, not a data word basis. Other
extensions proposed in this paper include accounting for

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

wrap-around behavior in the case of overflow and the
analysis of all the program code (including library code).
At the same time, the technique implemented works at the
binary level, not with a HLL representation as the
previously cited work did. To the best of our knowledge,
profiling techniques to enhance value range propagation
have not been studied so far. Thus, another novelty of this
work is the proposal of the Value Range Specialization
(VRS) technique. VRS is a profile-based technique similar
in concept to Value Specialization [7][8] that leverages
profiling analysis to estimate the run-time value range of a
given set of candidate operands. After a cost-benefit
analysis, some of these candidates may be specialized for a
given range followed by a value range propagation step.
This may result in range reduction for certain operands in
some portions of the code. Value Range Specialization
differs from previous proposals because (1) it uses energy-
based heuristics to decide which instructions to specialize,
and (2) it specializes on value ranges (not just single
values). A more detailed analysis of related work is in
Section 5.

This paper is organized as follows. Section 2 describes
the proposed Value Range Propagation technique. Section
3 describes the profiling technique, namely Value Range
Speculation. The performance evaluation and the hardware
implementation issues are presented in Section 4. The
related work is discussed in Section 5. Finally, conclusions
are presented in Section 6.

2. Value Range Propagation
A compiler or binary translator implements the

proposed VRP technique. It first finds individual
instructions where value ranges can be immediately
determined. It then propagates this information to other
instructions and estimates a conservative value range for
each integer register. Methods are given for propagating
value ranges within loops and across procedure
boundaries. Value range information can then be used to
determine the number of bits that must be computed and
stored in order to maintain the semantics of the original
HLL program. Finally, opcodes are assigned to specify the
needed value ranges.

In our study, based on a 64-bit architecture, we assume
that opcodes may specify operand widths of a byte,
halfword, word, and doubleword. Many conventional ISAs
already support many of the needed opcodes; otherwise
opcode sets will need to be enhanced.

VRP is always done in a conservative manner (and thus
requires no hardware or software recovery techniques). All
the decisions concerning unknown ranges are always in
the conservative worst-case direction, ensuring the
correctness of results. If there is a case where a given
value is used in more than one place with different ranges,
the widest range is assumed.

Furthermore, value ranges are not propagated through
memory. To perform accurate VRP through memory,
address alias analysis is required. To keep things simple,
all memory values are assumed to be 64-bit values (unless
the specific data declaration states otherwise).

2.1 Finding Initial Value Ranges
Following is a list of the cases where bounds on value

ranges for individual operands can be immediately
determined, regardless of other instructions.
• Instructions that are declared to have narrow-width

operands; for example, in terms of a HLL like C: “int
a; a=a+1” where an int is 32 bits. The compiler would
select a 32-bit operand for a and a 32-bit addition if
available as an opcode. Alternatively, if binary
translation is being used and the original binary has a
narrow-width opcode (i.e. add_long), the binary
translator can use this information (the 32-bit addition
opcode) to infer that the range of the result value will
be 32 bits.

• Assignments of the type (VAR=constant). The value
range of VAR is set to the single constant value.

• If-condition statements whose evaluation implies a
bound on the tested variable along the true or false
path. For example “if (X >= 7) then….” places a lower
bound on X along the true path and an upper bound on
X along the false path.

2.2 Forward and Backward Value
Propagation

Given the initial value range information, additional
information can be derived for other instructions via a
propagation process, as follows. The propagation
alternates between forward and backward traversals of the
program’s data-dependence graph until a stable state is
attained or a limit on the number of traversals is reached.
During a forward propagation, the dependence-graph is
traversed in a top-to-bottom style. For each instruction, the
range of the output operand (if any) is determined based
on the range(s) of the input operands. In a backward
propagation, the traversal of the dependence-graph is done
in a bottom-top manner. During this traversal the range of
every instruction’s input operand is set depending on the
range of its output operand, the type of operation, and
previous ranges of input values. The following subsections
describe value range propagation for some of the more
common instruction types.

2.2.1 Addition
Given the value range information of the inputs

(RangeIn1 and RangeIn2); the value range information of
the output is:
In a forward traversal:

 RangeOut.MinVal=(RangeIn1.MinVal+RangeIn2.MinVal)

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 RangeOut.MaxVal=(RangeIn1.MaxVal+RangeIn2.MaxVal)
If an input value can be produced by different

instructions, there is an additional step of defining a range
for each of the potential input values. Then, the minimum
value for a given input variable will be calculated as the
minimum value of all the possible producers and the
maximum value as the maximum of all the possible
producers. This is the conservative safe approach.
In a backward traversal:

 RangeIn1.MinVal=(RangeOut.MinVal-RangeIn2.MaxVal)
 RangeIn1.MaxVal=(RangeOut.MaxVal-RangeIn2.MinVal)
 RangeIn2.MinVal=(RangeOut.MinVal-RangeIn1.MaxVal)
 RangeIn2.MaxVal=(RangeOut.MaxVal-RangeIn1.MinVal)

If there is a case where the output value is used in more
than one instruction, the above expressions are applied to
all dependent instructions and the minimum and maximum
values calculated are chosen. A similar approach is used in
the other arithmetic instructions.

In arithmetic operations, such as the addition,
overflows may occur. In this case, we assume that
conventional two’s complement arithmetic is used (i.e.
overflows wrap around). If overflow is possible then the
calculated range takes the wrap around behavior into
account. Although in many cases this may be overly
conservative, it ensures correctness of the generated code.

2.2.2 Loads
In a forward traversal, the range of the output value

(the loaded value) is set to the maximum and minimum
values that the instruction can load, depending on the
instruction’s opcode. During a backward traversal, the
range of the loaded value is set for those instructions that
use it, possibly reducing the conservative range assumed in
the forward traversal.

2.2.3 Stores
Stores are ignored for forward traversals because they

do not produce a result, whereas during backward
traversals, the stored value may be constrained to a limited
range depending on the store width specified by the
opcode.

2.2.4 Branches
Unconditional branches do not provide information

about value ranges. On the other hand, the comparison(s)
upon which conditional branches depend are used to
determine value ranges for each path. For example,
consider the following code.

if (a<=100) then {
 /* within the if condition */
} else {
 /* within the else condition */
}

In the “within the if condition” piece of code, the
maxium value of “a” is set to 100, and in the “within the

else condition” piece of code, the minimum value of “a” is
set to 101.

2.2.5 “Useful” Range Propagation
Some instructions constrain the range of the values due

to their operations. Important cases follow.
• Logical operations. For example, AND R1, 0xFF, R2

(i.e. R2←R1&0xFF); OR R1, 0xFFFFFFFF00000000,
R2 (i.e. R2←R1|0xFFFFFFFF00000000).

• Mask operations (already present in the ISA). For
example, MSKBL R1, 0, R2 which extracts the least
significant byte of R1 and copies it to R2; the rest of
bytes of R2 are set to zero.

• Limited width fields (i.e. shift amounts). For example,
SRL R1, R2, R3 (i.e. R3←R1>>R2) constrains the
range of R2 because the useful range for the shift
amount is between 0 and 63 in the assumed ISA.
A conventional VRP would assume that the range of

input values is defined to include all possible runtime
values. As noted in the introduction, we are only interested
in the useful values, i.e. the ones that affect program
results. So for example, in the case of AND R1, 0xFF, R2
our VRP method would backward propagate the fact that
just the low order byte of R1 is needed because all other
bytes are set to 0 regardless of their previous value.

In order to ensure correctness when propagating
“useful” range information, the technique must ensure
there is no other point in the program where a wider range
of the operand is semantically relevant. In the AND
example given above, if R1 is used somewhere else in the
program execution with a wider range, the wider range is
used despite of the constraint derived from the AND
operation. Similarly, “useful” backward propagation
through arithmetic instructions is disallowed in order to
avoid hiding overflows; for example, in the case of a loop
whose upper bound is unknown, a value within the loop
that is incremented may result in an overflow even if only
the first byte is used.

2.2.6 Example
Figure 1 is a simple example that illustrates value

propagation. Steps 1 through 7 and 9 occur during forward
propagation and the 8th step during backward propagation.
At step 6, the loop trip count is calculated according to the
algorithm described below. INTmin and INTmax stand for
the minimum and maximum possible values for an integer
value; these are the default values for any integer value. In
step 8, a1in refers to the input a1 value. In the first step, a0
is assigned the base address of the vector. Because it is an
unknown value, the widest possible range is chosen. In
step two, a1 is assigned a 0 and the range is set to the
specific value. In step 3, a3 is assigned the product of a1
and 4. Because a1 is 0, the multiplication results in 0.
Then, a0 is added to a3, and the widest possible range is
chosen for a2. Then, there is a store, which does not
change any value ranges. Then a1 is incremented (step 6).

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

At this point, the loop is detected and the loop trip count is
calculated (as will be explained in next section); then the
value range of a1 at the jump is set (step 7). Once the
forward propagation is done, the algorithm starts the
upward propagation. In step 8, the range of a1 as an input
value is set (according to the range of the output <1,100>
and the increment). In the following and last step, the
value range of a3 is updated according to the new range of
a1.

Figure 1: Example of value range propagation

2.3 Loops
Loops require special treatment. The range of values

generated by instructions in a loop depends on the number
of iterations. Consequently, a loop trip count estimation
technique is implemented. This technique focuses on loops
(typically “for” loops), where the iterator is of the form
x=ax+b (where a and b are constants and x is the iterator).
This includes, for example, loops of the form: “for
(i=constant; i<constant; i=ai+b)”. Some loops that are
not included are those having more than one iterator and
loops that depend on a comparison to finish. This
introduces limitations on the technique, depending on the
source code being analyzed.

Sometimes certain parts of a given loop are executed
more or less often than others parts. In these cases, a
detailed loop trip count for each section can often be
computed. For example, given the loop:

for (i=0;i<100;i++) {
 if (i<50) then ...
 else ...
}

The number of times each region is executed can be
determined because it depends directly on the loop trip
count. Nevertheless, there might be cases where this
“local” trip count cannot be statically estimated:

for (i=0;i<100;i++) {
 if (a[i]==0) then ...
 else ...
}

If the trip count is partially known or not known at all,

then the worst-case range is assumed. In Section 2.2.6 an
example of value range propagation using the loop trip
count was shown.

2.4 Other considerations
Our implementation of VRP includes interprocedural

analysis. In this case, all the values passed from one
function to another through registers keep their range
information. At a procedure entry point, the possible
ranges of the registers are analyzed, and the most
conservative range is calculated. For return values, the
range of value(s) returned in register(s) is set. Because
value propagation through memory is not taken into
account parameters passed by-reference do not have value
range information.

In the case of the memory hierarchy, two approaches
are possible: (1) extend the data values with size
information (two extra bits that tell us whether the value is
8,16,32 or 64-bit long) and store them in the cache or (2)
sign-extend values before moving them to the cache. In
this work, we have assumed the first approach because it
yields more energy benefits. Finally, narrow values are
always kept in 2’s complement to keep information about
the sign.

3. Value Range Specialization
Value Range Specialization is a compile-time

technique based on profiling. The technique has three
steps:
1. Identification of instructions (candidates) where

specialization may be profitable using basic block
profiles (i.e. basic block counts).

2. Computation of the ranges of values for the candidates
with the support of profiling data.

3. Specialization of the candidates that are deemed
profitable.

The first step defines the candidates for specialization.
In other words, it defines the set of instructions that have
the better chance of being profitable specialization points.
These candidates are then profiled. With the profiling
information on the value ranges, the benefits of
specializing each candidate is then evaluated. If there is
energy savings expected from specializing the candidate
for a certain range, the specialization phase clones the
section of code under consideration, it adds the tests for
the specialized code, and propagates the new range to the
specialized region.

Original C code:
for (i=0; i<100; i++) {
 a[i]=i;
}

a0 = @a
a1 = 0

a3 = a1*4
a2=a0+a3
mem[a2]= a1
a1 = a1+1
a1 < 100

return

1. a0=<INTmin, INTmax>
2. a1=<0,0>

3. a3=<0,0>
4. a2=<INTmin, INTmax>

5. a1=<1,1>
6. tripcount=100
7. a1=<1,100>

8. a1in = <0,99>

9. a3 = <0, 396>

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

3.1 Computing the Energy Savings of
Specialization

Let us define InstSaving(I,r,min,max) as the energy
saved when the input register r of instruction I has a given
value range [min,max]. InstSaving is calculated in the
following way: given the range of the input operands (one
of which is r). The range of the output register is set; then,
if the width of the output register has changed (meaning it
may need a narrower opcode), the energy savings are
computed. These instruction-type dependent energy
savings have been empirically defined for each instruction
type and operand-width through the observation of its
energy requirements (see Section 4.1 for the experimental
framework). The energy savings for a given instruction I,
denoted as Savings(I,r,min,max), is the energy saved for
all dependent instructions on the output register r of
instruction I.

∑

∈∀

 +
=

),()max',min',',(
max)min,,,()(

max)min,,,(
rIUsesD rDSaving

rDgxInstSavinDInstCount
rISaving

Where r’ is the output register of instruction D and its

range is [min’,max’]. Uses(I,r) are all the instructions that
use the output register r of instruction I. InstCount(D) is
the number of times instruction D is executed.

The savings of each instruction type have been
empirically computed by determining the energy-savings
(in nJoules) of a given instruction type with different
operand width. In this case, the whole SpecInt 95
benchmark suite was run to completion with their
reference inputs. Table 1 depicts the energy savings for
ALU operations:

This function, Savings(I,r,min,max), will be useful both
when looking for candidates to profile and then, together
with the profiling data, for estimating the run-time energy
savings.

Table 1: Energy savings for ALU operations (nJoules)

Source Width →
Dest. Width ↓

64 32 16 8

64 - -1 -3 -6
32 1 - -2 -5
16 3 2 - -3
8 6 5 3 -

3.2 Computing the Cost of Specialization
The benefits of specialization have to be weighed

against the costs incurred due to runtime tests. The cost of
such tests depends on the actual range being tested. For
instance, if the minimum and the maximum of a given
range are the same value, just one comparison is needed;
otherwise, two tests are needed (one to check the minimum

and one to check the maximum). Due to the way tests are
implemented in the Alpha architecture, testing for a zero
value can be done in one single instruction but testing for a
non-zero value has to be done with two instructions.

In order to compute the cost in terms of energy, each
instruction needed in the test is given an energy
requirement in relation to its instruction-type (branches,
comparisons, and additions).

+

+
=

CostAddNAdds
isonCostComparnsNCompariso

CostBranchNbranches
rIInstCost

*
*

*
),(

),(*)(),(rIInstCostIInstCountrICost =

Nbranches, NComparisons and Nadds are,

respectively, the number of branches, the number of
comparisons and the number of additions needed to
perform the test, and CostBranch, CostComparison and
CostAdd are the energy costs for each of these instructions.

3.3 Identifying the Candidates for
Specialization

In order to avoid profiling the values generated by
every single instruction in the program code, we attempt to
identify candidates for which some potential savings are
likely. To accomplish this, a preliminary benefit analysis is
done assuming that the cost of specialization is a single
comparison (the minimum possible cost). This preliminary
analysis significantly reduces the number of candidates
and, therefore, the amount of required profiling.

Given the set of candidates to be profiled, we use the
scheme proposed by Calder et al. [7]. The technique adds a
function in the program that is called at the profiling points
and stores the actual value in a fixed-size table every time
it is called. If the value is already in the table, the count of
that value is incremented. Otherwise, if the table is not
full, the value is added. If the table is full the value is
ignored. Periodically, the table is cleaned by evicting the
least frequently used values from the table: this allows new
values to enter the table. The total number of times the
profiling point is executed is also kept in a separate
counter.

3.4 Specialization of the Candidates
Specialization is done in two steps. First, the profile

data is analyzed and the set of candidates is reduced to
those that still provide benefits, considering the run-time
range information. Then, the program is transformed
accordingly. The benefit of specializing is computed
through the formulas presented earlier. For each candidate
the energy savings and the energy costs are computed
using the profile information. Specializing a given
instruction I, for a range of [min,max] of its output register

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

r, is worthwhile if the overall benefit given in the
following expression is positive.

),(max)(min,*),(rICostFreqrISavings −

Where Freq(min,max) is the frequency that the range
of the value of r is within the range of the specialized
region, i.e., it is the frequency that the program path will
go through the specialized code.

There are two possible transformations of the code. In
the case where the range [min,max] results in
specialization for a single value (i.e. min=max), a value
specialization method is used. Otherwise, a value range
specialization method is used. The value specialization
method is based on the one proposed by Muth, et al. [16].
In the case of the value range specialization, the method is
a variation of the single value specialization adapted to
ranges.

VRS basically duplicates the regions of code that are
affected by the specialization, and then inserts tests to
dynamically select the region that will be executed: either
the specialized or the non-specialized one. The tests
consists of two comparisons and an AND operation
followed by a conditional branch. The condition tested is
(x>=min && x<=max) where x is the value that is being
specialized. This condition ensures the correctness of the
execution of the specialized code.

4. Evaluation

4.1 Experimental Framework
To evaluate the proposed techniques, we use an

extended version of Wattch [4] for power analysis. The
extensions include activity counts for all the blocks to
allow proper data-specific power modeling. The main
architectural parameters of the out-of-order machine are
described in Table 2. VRP and VRS were implemented in
the Alto [15] binary optimizer. Some modifications were
done in the optimizer by expanding the use-def algorithm
to allow for inter-basic-block and inter-procedural,
forward and backward traversals. In order to implement
VRS, the profiling part of Alto was modified by inserting
the capability of profiling value ranges, computing the
cost/benefit equations in terms of energy, and modifying
the specialization function to insert the correct
specialization code for value ranges. We used the
programs from the SpecInt95 suite with their reference
inputs (and train inputs to perform profiling). All
benchmarks were compiled with the HP-Alpha C
compiler. The resulting binaries were optimized at the
maximum level and post-processed with our binary
optimizer in order to perform VRP, the overhead of the
VRP was minimal (ranging from 0.02% to 0.08%
increased processing time). All benchmarks were run to

completion both for profiling analysis and for energy
evaluation.

Table 2: Machine parameters
Parameter Configuration

Fetch Width 4 instructions

I-cache
64KB, 2-way set-associative. 32-byte
lines, 1-cycle hit time, 6-cycle miss

penalty.

Branch Predictor

Combined predictor of 1K entries with a
Gshare with 64K 2-bit counters, 16 bit
global history, and a bimodal predictor

of 2K entries with 2-bit counters.

Decode/Rename width 4 instructions

Max. in-flight instructions 64

Retire width 4 instructions

Functional units 3 intALU + 1 int mul/div +
3 fpALU + 1 fp mul/div

Issue mechanism 4 instructions
Out-of-order Window based

D-cache L1

64KB, 2-way set-associative. 32-byte
lines, 1-cycle hit time, 6-cycle miss

penalty
3 R/W ports

I/D-cache L2

256 KB, 4-way set associative, 64-byte
lines, 6-cycle hit time

16 bytes bus bandwidth to main
memory, 16 cycles first chunk, 2 cycles

interchunk

Physical registers 96

0%
10%
20%
30%
40%
50%
60%

8 bits 16 bits 32 bits 64 bits

Instruction width

pe
rc

en
ta

ge

Conventional VRP
Proposed VRP

Figure 2: Dynamic instruction distribution according

to value range

4.2 Benefits of “Useful” Value Range
Propagation

Figure 2 shows the distribution of the run-time
instructions (on average for SpecInt95) according to the
widths determined by value range propagation. The
extended value range propagation technique that
distinguishes useful ranges from actual ranges (labeled in
the figure as Proposed VRP) can identify more instructions
with narrow operands than the conventional VRP. For
instance, the number of 64-bit instructions is reduced from
a 51% to a 42%.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

4.3 Required Opcode Extensions
Depending on the initial instruction set, some new

opcodes may have to be implemented to fully support the
proposed VRP technique. In this section, we analyze
extensions required by the Alpha ISA.

The technique as presented applies only to integer
computations. In addition, branch instructions are not
taken into account because they manipulate addresses (i.e.
wide data). The Alpha ISA already supports byte,
halfword, word and double word memory operations
(Load1 and Store). In Table 3, the distribution of other
instructions is presented, ordered by their dynamic
percentage of
occurrence (for SpecInt95). The first column lists the
operation type, the second column gives the percentage of
dynamic instructions of the given type, and the remaining
columns give the various data widths as a percentage of
instructions of that type, i.e. as a percentage of the column
2 percentages. Hence, 24 percent of the ADD instructions
operate on 8 bits, or about 6.65 percent of all dynamic
instructions.

Because the MUL operation is rarely used and almost
half the time it uses 64 bits, there is no advantage to
implementing narrow-width MUL instructions. Similarly,
there are very few 16-bit operations overall. Only ADD is
likely to be important enough to warrant a 16-bit version.

Table 3: Distribution of operation types

Percentage of
run-time

instructions 64b 32b 16b 8b

ADD 27.66 58.04 14.37 10.98 24.03

MSK 5.18 35.50 13.41 13.57 37.63

CMP 3.78 6.18 7.79 20.53 64.84

SHIFT 2.75 29.91 19.56 22.90 32.23

SUB 2.35 13.87 15.76 16.82 60.78

AND 1.92 16.11 8.73 27.03 48.94

OR 1.79 23.77 5.90 3.53 68.62

XOR 1.15 17.04 7.52 29.77 43.89

CMOV 0.80 18.42 20.04 25.33 39.61

MUL 0.18 47.95 23.39 7.04 26.87

Overall, new opcodes added to the Alpha ISA are: byte

and halfword addition; byte substraction; byte and word
logical operations (and, or, xor), and byte and word shifts,
conditional moves and comparisons.

If narrow data-width opcodes are not implemented,
value range propagation must ensure that whenever a
wider instruction is used, the values read at run time
contain significant data for all the input bytes. For

1 Although the byte and halfword load is unsigned it has no effect on the

value range propagation.

example, it would be unacceptable for the result of a 16-bit
load to be used as input to a 32-bit multiplication.

0%
5%

10%
15%
20%

Ins
tru

cti
on

 Q
ueu

e

Ren
am

e B
uff

ers LS
Q

Reg
ist

er
File

D-C
ac

he
 (L

1) FU

Res
ult

bu
s

Proc
es

so
r

Processor part

Pe
rc

en
ta

ge

Figure 3: Energy savings with VRP

0%

20%

40%

60%

80%

100%

co
mpre

ss gc
c go ijp

eg li

m88
ks

im pe
rl

vo
rte

x

Ave
rag

e

Benchmark

Pe
rc

en
ta

ge

Specialized
Dependant on another po int
Po ints generates no benefit

 69 2098 379 366 53 82 63 61
396

Figure 4: Distribution of the points profiled after

specialization

4.4 Energy Savings
The VRP mechanism does not affect the performance

of the benchmarks because it just re-encodes the
instructions with narrower opcodes. These narrower
opcodes are then used to gate-off the portions of the
datapath that are not needed for the computation of the
final results. Figure 3 shows the energy savings of the
proposed VRP mechanism. The results for the rename
logic, branch prediction, instruction cache and second
level cache are not given because are not affected by VRP.
Nevertheless, the power consumption of these components
is part of the “processor” column, which includes the
whole processor.

The power savings is up to 18% for the most data
intensive structures (i.e. functional units), but for most
other structures the savings are around 15% (instruction-
queue, rename buffers, register file and the result busses).
The memory management structures (LSQ and L1 data
cache) show a minor improvement because they handle
memory addresses (typically, large values). Overall, the
savings in these structures turn into an overall energy
savings close to 6% on average for the SpecInt95 suite.

4.5 Benefits of Value Range Specialization
As explained in Section 3, VRS is supported by data

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

profiling. Figure 4 shows the distribution of the points (i.e.
instructions) that were profiled. The number on the top of

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

co
mpre

ss gc
c go ijpe

g li

m88
ksi

m
pe

rl

vo
rte

x

Ave
rag

e

Benchmark

Pe
rc

en
ta

ge

percentage eliminated

percentage specialized

118 10628 2139 1448 90 77 7613 101 2777

Figure 5: Distribution of the specialized instructions at

compile-time

0%

5%

10%

15%

20%

25%

30%

35%

40%

co
mpre

ss gc
c go ijp

eg li

m88
ks

im pe
rl

vo
rte

x

Ave
rag

e

Benchmark

Pe
rc

en
ta

ge

specialized instructions
specialization comparisons

Figure 6: Distribution of run-time instructions

each bar is the total number of points profiled for each
benchmark. Several filters were implemented in order to
select only those profiled points that may result in an
energy benefit. As shown in Figure 4, most of the profiled
points are eliminated because they produce no benefit
(88% of the points). The other reason for eliminating a
point is that it is included in a region optimized as the
consequence of another point. On average this happens for
only 2% of the points. In the end, the number of
specialized points is 7% of those profiled. This means that
on average 15 points are specialized per benchmark, and
individual benchmarks range from 3 (perl) to 55 (gcc).

Figure 5 shows the distribution of static instructions
specialized for each benchmark and the average for all the
benchmarks. In most cases instructions are specialized by
establishing a new, more concise value range, however,
there is also a significant number of instructions
(especially in m88ksim and vortex) removed from the
specialized sections of the code. This is a consequence of
specializing for a given value and applying constant
propagation.

At run time, the distribution of specialized instructions
is shown in the first column of each benchmark in Figure

6. The second column reports the percentage of
instructions needed to specialize a point (comparisons,
etc). As shown in Figure 5, m88ksim and vortex eliminate
almost all the

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

non VRP VRS 50uJ

Value Range Mechanism

P
er

ce
nt

ag
e 64 bits

32 bits
16 bits

8 bits

Figure 7: Run-time instructions according to width

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

co
mpre

ss gc
c go ijp

eg li

m88
ks

im pe
rl

vo
rte

x
AVG

Benchmark

Pe
rc

en
ta

ge

VRP
VRS 110nJ
VRS 90nJ
VRS 70nJ
VRS 50nJ
VRS 30nJ

Figure 8: Energy savings for Spec95

specialized instructions, which results in a minimal run-
time occurrence of specialized instructions. On average,
more than 15% of the executed instructions are specialized
-with a maximum of 35% for perl; while the comparisons
represent 1% of the executed instructions on average.

Another interesting statistic is the distribution of the
size of run-time instructions for the different value range
propagation mechanisms. Figure 7 shows the distribution
of the run-time instructions on average for SpecInt95. The
first column is the baseline in which no mechanism is
implemented. In this case, most of the instructions deal
with 64-bits or 32-bits. When VRP is implemented, the
number of 64-bit instructions diminishes to 40%, and it
further decreases to 30% with VRS. On the other hand, the
VRS mechanism increases the number of 8-bit
instructions.

Figure 8 shows the energy savings in relation to the
baseline (the architecture without any value range
mechanism). In the case of the VRS mechanisms, different
configurations have been studied depending on the cost (in
nanoJoules) of specializing. In most of the benchmarks, all

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

five alternatives of VRS perform similarly (in terms of
energy), which means that the candidates chosen for
specialization are essentially the same in these
configurations.

-5%

0%

5%

10%

15%

20%

25%

Re
na

m
e

Br
an

ch
 P

re
di

cti
on

In
st

ru
cti

on
 Q

ue
ue

RO
B

Re
na

m
e

Bu
ffe

rs

LS
Q

Re
gi

ste
r F

ile
I-c

ac
he

D-
ca

ch
e

(L
1)

D-
ca

ch
e

(L
2)

AL
U

Re
su

lt b
us

Pr
oc

es
so

r

Processor part

Pe
rc

en
ta

ge
 o

f e
ne

rg
y-

re
du

ct
io

n

VRP
VRS 110nJ
VRS 90nJ
VRS 70nJ
VRS 50nJ
VRS 30nJ

Figure 9: Energy benefits for the different parts of the

processors

-1%

0%

1%

2%

3%

4%

5%

co
mpre

ss gcc go
ijp

eg li

m88k
sim perl

vo
rte

x
AVG

Benchmark

Pe
rc

en
ta

ge

VRS 110nJ
VRS 90nJ
VRS 70nJ
VRS 50nJ
VRS 30nJ

Figure 10: Execution time savings

0%

5%

10%

15%

20%

25%

30%

co
mpre

ss gc
c go ijp

eg li

m88
ks

im pe
rl

vo
rte

x
AVG

Benchmark

Pe
rc

en
ta

ge

VRP
VRS 110nJ
VRS 90nJ
VRS 70nJ
VRS 50nJ
VRS 30nJ

Figure 11: Energy-Delay2 benefits for the Spec95

Detailed energy benefits for all parts of the processor

are shown in Figure 9. Due to the nature of the
mechanism, the parts that benefit most from value range
mechanisms are those that directly manipulate data values
(i.e. instruction queue, rename buffers, register file,
functional units and result buses). Because VRS modifies
code (by adding comparisons to perform specialization and
removing instructions in the specialized sections), results
for all parts of the processor may realize some benefit.
Minimal energy benefits arise from reduction in number of
instructions, but more impressive benefits arise from the
data-dependent structures – the ones the technique focuses

on. Overall, the energy benefits of the VRS mechanism are
around 9% while most of the data intensive structures get
over 20% of energy savings.

 1 2 3 4 5 6 7 8
0

10

20

30

40

50
Size in bytes

P
er

ce
nt

ag
e

of
 o

cc
ur

re
nc

e

Figure 12: Data size distribution for the SpecInt 95

0%

5%

10%

15%

20%

25%

co
mpre

ss gc
c go ijp

eg li

m88
ks

im pe
rl

vo
rte

x
AVG

Benchmark

Pe
rc

en
ta

ge

size compression
signif icance compression

Figure 13: Energy Savings for the different hardware

approaches (Average SpecInt 95)

Because the code is modified by inserting the

comparisons eliminating the instructions in the VRS
sections of specialized code, it is important to see the
impact on the execution time of the benchmarks with the
VRS technique. As noted earlier, the VRP mechanism
does not affect performance because it does not
add/remove any instruction to/from the code; it just re-
encodes the instructions with narrower opcodes. Figure 10
shows the reduction in execution time. Except for one
configuration of VRS with benchmark go, the rest of the
binaries perform better when VRS is included.

In order to compare the benefits of using the VRS
mechanism, the energy-delay2 metric [2] provides a fair
comparison of all the design points taking into account
both energy and execution time. Figure 11 shows the
improvement in energy-delay2 for all the benchmarks in
SpecInt 95. On average the benefits of the VRP
mechanism are a little above 5% but when using the VRS
mechanism the benefits rise to almost 15%. For gcc the
benefit rises to 25%.

4.6 Comparison with a Hardware Approach
To compare the proposed scheme with a hardware

approach, we implemented the scheme given in [9]
adapted to work on a 64-bit architecture. Two data
compression methods are used. The first is significance

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

compression where seven tag bits are added per data word
(64 bits) to indicate the number of significant bytes. The
second method is size compression that uses two bits per
data word

0%

10%

20%

30%

40%

50%

60%

Ren
am

e

Bran
ch

 Pred
ict

or

Ins
tru

cti
on

 Q
ueu

e
ROB

Ren
am

e B
uff

ers

Ld
/S

t Q
ue

ue

Reg
ist

er
File

I-C
ac

he

D-C
ac

he
 (L

1)

D-C
ac

he
 (L

2) Fus

Res
ult

 B
us

Proc
es

so
r

Processor part

Pe
rc

en
ta

ge

size compression
significance compression

Figure 14: Energy savings for each processor part

(Average SpecInt 95)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

co
mpre

ss gc
c go ijp

eg li

m88
ks

im pe
rl

vo
rte

x
AVG

Benchmark

Pe
rc

en
ta

ge

VRP VRS 50
hdw size hdw signif icance
VRP + hdw size VRP + hdw signif icance
VRS 50 + hdw size VRS 50 + hdw signif icance

Figure 15: Energy-delay2 savings for different

hardware and software configurations

to indicate whether the value is 1, 2, 5 or 8 bytes long.
This choice is based on analyzing the value range
distribution for SpecInt95 (see Figure 12). This encoding
achieves an average size of 26.7 bits per value. The choice
of 5 bytes rather than the more natural 4 bytes is heavily
influenced by memory addresses that are between 33 and
40 bits long (note the peak at 5 bytes in Figure 12).
Overall, the distribution in Figure 12 shows a large
potential for dynamic hardware-implemented operand-
gating techniques because of the large number of narrow
values (i.e. 43% just need 1 byte to be represented).

Figure 13 shows the energy reduction of the hardware
approaches. On average, overall energy is reduced by
15%. The hardware approach has the advantage of
enabling multiple-size operands in the functional units. For
example, an addition of a 16-bit plus a 32-bit value
producing a 64- bit value could be possible. Furthermore,
the data-width of the same instruction for several different
executions can be different (this being a big difference
with respect to the software schemes presented here).

Overall, the hardware approach has more opportunities to
reduce the energy consumption despite the cost of keeping
several bits per data word. Figure 14 shows the savings for
each structure of the processor. Most benefit arises from
those structures directly manipulating values.

Figure 15 presents the energy-delay2 savings when
combining the hardware and software schemes. Both
hardware and software schemes cooperate to achieve a
higher percentage of energy-delay2 savings. The energy-
delay2 savings of the VRS mechanism are (on average)
very close to those of the significance compression
mechanism and better than the size compression
mechanism. For some benchmarks (gcc, perl and vortex),
the VRS mechanism has even better performance in terms
of energy-delay2 than the hardware mechanisms. The
reasons behind this competitive performance are the
reduction in the execution time, the minimal extra cost (in
hardware) of the software mechanism, and the accuracy of
value range analysis. The benefit of using the profiling
technique is even higher when a hardware scheme is also
used because the additional energy savings of the
hardware scheme are added to the reduction in execution
time of the profiling mechanism. In this sense, gcc
achieves almost a 35% energy-delay2 benefit when
combining the significance compression and VRS

4.7 Hardware and Software Trade-offs
Both hardware and software approaches to operand

gating have advantages and drawbacks. In general, the
hardware approach requires no change in the ISA and no
recompilation or binary translation. On the other hand,
software approaches require simpler microarchitecture
support. The changes to the microarchitecture in order to
support the hardware mechanism are basically the
following: (1) The use of tag bits (2 or 7 as explained
earlier in this section) that are stored with all values (in the
register file and in the cache). (2) The tag bits of a register
value must be read before the data in order to know which
bytes are significant and require a register file access. This
may introduce a delay in the register file access (this
potential penalty was not considered in the evaluation
above). (3) The functional units must be able to sign
extend some source operands (e.g., when adding a 16-bit
value with a 32-bit one). The functional units must
generate the tag bits for results. The software approach
encodes the width of the values used in the opcode and
thus requires minimal hardware changes.

In terms of value range propagation, the proposed
software approach can only identify and propagate useful
value ranges through the static program code, and may
eliminate significant data bits in the process if they are not
required for semantically correct results. On the other
hand, a dynamic hardware-based significance compression
mechanism is able to detect value ranges more accurately
than a static software method. This suggests a cooperative

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

hardware-software approach where both methods are used
in the same processor. To implement this cooperative
approach, value compression is initiated through both
compiler-generated instructions and hardware-generated
compressed values at runtime. In both cases, two
significance compression tag bits follow values in the
pipeline. Although the compiler generates opcodes for 8,
16, 32 and 64-bit wide data, when a hardware compression
mechanism is used, the manipulated values may have 8,
16, 40 or 64 bits within the microarchitecture. The
cooperative hardware and software approach achieves a
28% overall energy-delay2 savings in relation to the
baseline architecture.

Overall, the software scheme seems more appropriate
to an environment where the ISA already supports
multiple-size operations and where hardware overhead is
unaffordable. On the other hand, for scenarios where
recompilation is an issue and where hardware changes are
not critical, the hardware approach may be best. Finally,
only for environments where power is very critical, one
may be willing to pay the overheads of a combined
software and hardware approach in order to achieve the
extra 12% energy-delay2 reduction that the combination
provides over the hardware-only scheme.

5. Related Work
Techniques using value range propagation have been

used in high-level code transformations [5][13][18][20].
Our work applies such techniques at a much later code
development step due to the use of a binary optimizer [15].
The technique proposed here is more CPU specific but
totally compiler independent. For instance, forward
propagation and loop analysis have some precedent in
high-level program analysis mainly used during symbolic
analysis for different purposed such as parallelizing
compilers [1]. Other applications of value range
propagation include VLSI synthesis targeted at custom
processors (i.e. that execute only a certain application)
[10][13][20]. In [10] the authors propose a datapath-width
optimization framework based on runtime information
concerning the size of operands. This information is used
to rewrite the source code where each data type has a
width component. “Useful” value range propagation has
not been previously implemented, although Budiu et al. [5]
implemented useful bit-width computation (where each bit
was tagged whether it was useful or not). Alternatively,
value range propagation has been used for branch
prediction [18], although in this case backward
propagation and loop-carried expressions were not
considered.

Brooks et al. [4] suggest a runtime mechanism that
detects the widths of the instructions that will be executed
and packs them so they are executed at the same time
taking advantage of the 64-bit wide functional units. Loh
[12] suggests a similar approach by speculating about data-

width locality. Nakra et al. [17] propose a similar approach
for VLIW architectures.

Data value compression has been studied for different
functional blocks. Sato et al. [19] showed the power
savings in a data value predictor when storing narrow data.
Villa at al. showed the effect of compressing zero values in
the cache [21]. Yang and Gupta studied efficient I/O [22].
Data value compression was used for a broader scope in
[9]. In that case, the overall microarchitecture was
redesigned to work on narrower data.

Alternative approaches for narrow values include
vector or multimedia extensions like MMX-SSE, AltiVec
and 3DNow!. These approaches are most efficiently when
used directly by the programmer. As presented in Nakra’s
work [17], unless the compiler is able to compact different
arithmetic operations in one vector instruction; the
compiler is very inefficient when producing the vector
instructions. Nevertheless, the approach presented in here
could improve these vector extensions and thus, the
energy-efficiency of the processor.

6. Conclusions
Operand gating has been shown to be an effective way

to increase the processor energy-efficiency. A software
technique for operand gating has been proposed. With
minimal extensions to the ISA, the software approach is
able to extract width information from the binary code and
then propagate it to the microarchitecture. By extending
the propagation through profiling to further constraint the
value ranges, multiple versions of code for certain program
segments are created and the most efficient one is
dynamically chosen based on the actual values of the
operands. The proposed technique achieves an overall
14% energy-delay2 reduction for the SpecInt95 set. It
achieves a much better reduction for data-intensive
structures where the energy-delay2 benefits are over 20%.

A hardware-only scheme was investigated for
comparison. It requires some extensions to the
microarchitecture and achieves an average energy-delay2
benefit of 15%. The hardware scheme can reduce the
energy for any data that has a small number of significant
bits. Because the values are checked dynamically at run-
time, operand gating is optimized for each particular
instance of any operand. On the other hand, the software
approach has to make conservative assumptions for two
reasons. First, it has to assume the worst-case range when
the compiler does not know the potential values of a
variable. Second, it uses a unique range for each static
instruction that includes all the values of the corresponding
dynamic instances of the static instruction. However, a
software scheme has a number of advantages. For instance,
software analysis can detect useful bits, which in general
are more restrictive than significant bits. This suggests that
a combined hardware-software approach can further

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

reduce the energy consumption. Our experiments show an
average energy-delay2 benefit of 28%.

Acknowledgments
This work has been supported by the Spanish Ministry

of Education contract CICYT- TIC2001-0995-C02-01.
The research conducted in this work has been done using
the resources of the CEPBA. Ramon Canal would like to
thank his fellow PBCs for their patience and precious help.

References

[1] W.J. Blume, “Symbolic Analysis Techniques for Effective
Automatic Parallelization”, Ph.D. Thesis University of
Illinois at Urbana-Champaign, 1995.

[2] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A.
Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gupta, P.
Cook, “Power-aware microarchitecture: design and
modeling challenges for next-generation microprocessors”,
IEEE Micro v 20-6, Nov/Dec 2000 pp. 26-44

[3] D. Brooks and M. Martonosi, “Dynamically Exploiting
Narrow Width Operands to Improve Processor Power and
Performance”, in Proc. of 5th. Int. Symp. on High- Perf.
Comp. Arch.., 1999.

[4] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimization”, in Proc. of the 27th Annual International
Symposium on Computer Architecture, June 2000.

[5] M. Budiu, S. Goldstein, M. Sakr and K. Walker. “BitValue
inference: Detecting and exploiting narrow bitwidth
computations”. In Proceedings of the EuroPar 2000
European Conference on Parallel Computing, Munich,
August 2000.

[6] G. Cai and C.H. Lim, “Architectural Level
Power/Performance Optimization and Dynamic Power
Estimation”, in the Cool Chips tutorial of the 32nd Int.
Symp. on Microarchitecture 1999.

[7] B. Calder, P.Feller and A. Eustace, “Value Profiling”, in
Proc. Of the 30th International Symposium on
Microarchitecture, Dec. 1997, pp. 259-269.

[8] B. Calder, P. Feller and A. Eustace, “Value Profiling and
Optimization”, Journal of Instruction-Level Parallelism 1
(1999), pp. 1-6.

[9] R. Canal, A. González and J.E. Smith, “Very Low Power
Pipelines using Significance Compression”, in Proc. of the
33rd International Symposium on Microarchitecture, Dec.
2000.

[10] Y. Cao, H. Yasuura, “A System-Level Energy Minimization
Approach Using Datapath Width Optimization”, in Proc. of
the International Symposium on Low Power Electronics and
Design, August 2001.

[11] R. Iris Bahar and S. Manne, “Power and Energy Reduction
via Pipeline Balancing”, in Proc. of the 28th Annual
International Symposium on Computer Architecture, June
2001.

[12] G.H. Loh, “Exploiting Data-Width Locality to Increase
Superscalar Execution Bandwith”, in Proc. of the 35rd
International Symposium on Microarchitecture, Istanbul,
Turkey, November. 2002.

[13] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber and
T. Sherwood, “Bitwidth Cognizant Architecture Synthesis of
Custom Hardware Accelerators”, IEEE transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 20 n. 11 , Nov 2001 pp. 1355 -1371 .

[14] S. Manne, A. Klauser and D. Grunwald, “Pipeline Gating:
Speculation Control for Energy Reduction”, in Proc. of the
25th Int. Symp on Comp. Architecture, June 1998, pp.132-
141.

[15] R. Muth, S. Debray, S. Watterson and K. De Bosschere
“Alto: A Link-Time Optimizer for the Compaq-Alpha”,
Software Practice and Experience 31:67-101, January 2001.

[16] R. Muth, S. Watterson, S. Debray, “Code Specialization
based on Value Profiles”, in Proc. 7th International Static
Analysis Symposium, June 2000

[17] T. Nakra, B. Childers, and M.L.Soffa, “Width Sensitive
Scheduling for Resource Contained VLIW processors”,
Workshop on Feedback Directed and Dynamic
Optimizations (MICRO33), Dec. 2001.

[18] J. Patterson. “Accurate Static Branch Prediction by Value
Range Propagation”. In Proceedings of the Conference on
Programming Languages Design and Implementation, pp
67-78, June 1995.

[19] T. Sato and I. Arita, “Table Size Reduction for Data Value
Predictors by Exploiting Narrow Width Values”, in Proc. of
the 2000 Int. Conf. on Supercomputing, May 2000, pp.196-
205.

[20] M. Stephenson, J. Babb and S. Amarasinghe, “Bitwidth
Analysis with Application to Silicon Compilation”, in Proc.
of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation (PLDI 2001), pp.
108-120.

[21] L. Villa, M. Zhang, and K. Asanovic, "Dynamic Zero
Compression for Cache Energy Reduction”, in Proc. of the
33rd International Symposium on Microarchitecture, Dec.
2000.

[22] J. Yang and R. Gupta. “FV encoding for Low PowerData
I/O”. In Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, pages
84-87, Hungtinton Beach, August 2001.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

