
Probabilistic Predicate-Aware Modulo Scheduling

Mikhail Smelyanskiy � Scott Mahlke Edward S. Davidson

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48109

�msmelyan, mahlke, davidson�@umich.edu

ABSTRACT
Predicated execution enables the removal of branches by convert-
ing segments of branching code into sequences of conditional op-
erations. An important side effect of this transformation is that the
compiler must unconditionally assign resources to predicated op-
erations. However, a resource is only put to productive use when
the predicate associated with an operation evaluates to True. To re-
duce this superfluous commitment of resources, we propose prob-
abilistic predicate-aware scheduling to assign multiple operations
to the same resource at the same time, thereby over-subscribing its
use. Assignment is performed in a probabilistic manner using a
combination of predicate profile information and predicate analy-
sis aimed at maximizing the benefits of over-subscription in view
of the expected degree of conflict. Conflicts occur when two or
more operations assigned to the same resource have their predicates
evaluate to True. A predicate-aware VLIW processor pipeline de-
tects such conflicts, recovers, and correctly executes the conflicting
operations. By increasing the effective throughput of a fixed set
of resources, probabilistic predicate-aware scheduling provided an
average of 20% performance gain in our evaluations on a 4-issue
processor, and 8% gain on a 6-issue processor.

1. INTRODUCTION
Very long instruction word (VLIW) processors rely on an intel-

ligent compiler for extracting, enhancing, and exposing sufficient
instruction-level parallelism (ILP) to deliver high performance. To
extract ILP more effectively in the presence of branches and re-
duce the overhead of branches, predicated or conditional execution
is often employed. With predicated execution, operations are aug-
mented with an additional Boolean operand known as the guarding
predicate. When the guarding predicate is True, the operation exe-
cutes normally. Conversely, when it is False, the operation is nul-
lified. Predicated execution can be exploited by compilers that use
if-conversion to convert branching code into straight-line segments
of predicated operations [26, 2, 15]. As a result, many branches
and the difficulties associated with them can be eliminated.

Though generally effective at dealing with branches, predicated
execution introduces a serious overhead of its own. Predicated ex-
ecution trades off sequential execution of conditional operations
for increased resource requirements. If-conversion is additive with
respect to resources across branches to which it is applied. For if-
converted branches, the resources of the then and else clauses are
added to determine the overall resource requirements for the re-

�Mikhail Smelyanskiy is now with the System Technology Lab at
Intel Corporation.

sultant sequence of predicated operations. Intuitively this makes
sense, since to remove a branch, both clauses must be scheduled
with the appropriate one nullified at run-time. As a result, a com-
piler must apply if-conversion carefully to avoid over-saturation of
the processor resources [14].

Compile-time assignment of resources (e.g., fetch slots, regis-
ter ports, function units, memory ports) to predicated operations
is traditionally handled in a conservative manner. The compiler
assumes that any predicate may evaluate to True at run-time and
accordingly ensures that all resources required by an operation are
unconditionally available. However, this is not necessary. At run-
time, operations require resources when their predicate evaluates
to True. An operation with a False predicate only requires a subset
of its resources. The only required resources are those up to the
point of determining that its predicate is False; all later resources
assigned to a nullified operation are superfluous.

For a predicated architecture, processor resources can be bro-
ken down into two categories: must-use and may-use. A must-
use resource is required by an operation regardless of its run-time
predicate value. Conversely, a may-use resource is only required
when an operation’s predicate evaluates to True. The classification
of resources into the two categories is based on the point in the
processor pipeline where operations with False predicates are nul-
lified. Resources before the nullification point are must-use; those
after are may-use. Nullification later in the pipeline reduces the
latency from predicate computations to uses of those predicates;
nullification earlier in the pipeline reduces the number of must-use
resources.

To overcome the problem of superfluous resource utilization by
nullified operations, we propose probabilistic predicate aware
scheduling. In this work we apply this technique to modulo
scheduled loop regions which are generally resource constrained.
The central idea of PPAMS (probabilistic predicate-aware mod-
ulo scheduling) is to allow over-subscription of may-use resources
wherein multiple operations are allowed to reserve the same re-
source at the same time. As a consequence, it is possible for dy-
namic over-subscription of resources to take place so that two or
more resource-sharing operations will have their predicates evalu-
ate to True at runtime, resulting in a resource conflict. PPAMS is
a generalization of deterministic predicate-aware modulo schedul-
ing (DPAMS) [23]. DPAMS allows operations to share the same
resource when their predicates are provably disjoint, i.e. at most
one will evaluate to True at run-time. By allowing conflicts to oc-
cur, PPAMS finds many more combinable operations than DPAMS.
Thus, PPAMS significantly increases the utilization of may-use re-
sources and leads to improved processor performance. A secondary

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

benefit of PPAMS is that with resource constraints lessened, more
aggressive if-conversion can be applied to extract further benefit
from branch elimination.

The consequence of probabilistic over-subscription is that it is
possible for dynamic over-subscription of resources to take place.
In this situation, two or more operations will have their predicates
evaluate to True at run time resulting in resource conflict. To deal
with this problem, PPAMS estimates resource conflicts and makes
scheduling decisions to maximize the benefits of over-subscription.
Predicates are probabilistically analyzed using a combination of
predicate profile information and predicate analysis [11]. Predi-
cate profile information provides statistics on the expected number
of times a predicate will evaluate to True. Predicate analysis com-
putes superset/subset and disjointness relations among predicates to
identify when two or more predicates are guaranteed to definititely
or never conflict. Probabilistic analysis is used to identify prof-
itable opportunities for resource over-subscription. The scheduler
takes advantage of these opportunities when they lead to a tighter
schedule.

One obvious alternative to predicate aware scheduling is to sim-
ply build a wider processor with more resources. When the num-
ber of resources is sufficiently large, the problem of resource con-
tention goes away. However, this solution may have a high cost;
additional function units, register file ports, busses, etc. may be
necessary. This may be unacceptable, especially for cost- or power-
sensitive environments. Predicate-aware scheduling increases the
utilization of existing processor resources and therefore increases
application performance with a fixed set of resources. In this pa-
per, we present the necessary hardware and software extensions to
support PPAMS.

2. BACKGROUND AND MOTIVATION
Iterative Modulo Scheduling (IMS) [16] is a software pipelining

technique that interleaves successive iterations of a loop. The goal
of IMS is to find a valid schedule for an innermost loop that can be
overlapped with itself multiple times so that a constant interval be-
tween successive iterations (Initiation Interval (II)) is minimized.
The II-cycle code region that achieves the maximum overlap be-
tween iterations is called the kernel. The scheduler chooses its
initial II to be the maximum of two lower bounds. The resource-
constrained lower bound (ResMII) is equal to the number of cycles
that the most heavily used resource is busy during a single iteration
of the loop. The recurrence-constrained lower bound (RecMII) is
determined by longest cycle in the dependence graph.

To satisfy scheduling constraints, IMS uses two data structures
known as the Schedule Reservation Table (SRT) and the Modulo
Reservation Table (MRT). The actual realization of these two ta-
bles is implementation dependent. Conceptually they work as fol-
lows. The SRT displays the schedule for one iteration; it records
the use of a particular resource at a particular time by each spe-
cific operation [6, 16]. Scheduling at that time is permitted only if
the resource usage does not result in a resource conflict, and no la-
tency constraints of prior operations on which the operation being
scheduled depends are violated. The MRT is used by IMS to track
the modulo constraint which states that two operations that use the
same resource may not be scheduled an integer multiple of II cycles
apart from one another.

IMS is generally applied to single basic block innermost loops.
In processors that support predicated execution, if-conversion [26,
2, 15] is applied to broaden the class of loops that can be mod-

Function Unit Operations Mnemonics Latency
ALU (A) Add + 1

Or � 1
Predicate cmpp 1 or 3
Compare

Memory (M) Load ld 2
Store st 1

Branch (B) Branch on br 1
Condition

Table 1: Description of a sample processor with a fetch/execute
width of 3 operations

ulo scheduled. The performance of IMS is usually resource con-
strained, i.e. ������ is larger than ������ . Predication, which
merges together the operations along multiple control paths, fur-
ther increases the resource constraints by requiring an operation to
reserve its resource unconditionally, regardless of whether its path
is actually taken.

To illustrate the application of conventional IMS along with the
potential benefits of PPAMS, we consider a simple code example
and processor model. The example processor, which can fetch and
execute up to three operations per cycle, has three fully pipelined
function units as detailed in Table 1. The table lists two latencies,
1 and 3, for the predicate-defining operation, cmpp, because, as
discussed in Section 3, to support predicate-aware scheduling, the
cmpp latency must be increased by at least one cycle; in this simple
example, the cmpp latency is increased from 1 to 3 cycles.

Figure 1(b) shows the assembly code of an example if-converted
loop whose source code is shown in Figure 1(a). The predicate-
defining operation cmpp, which replaces the branch in the original
control statement, sets the predicate(s). For example, �� sets two
disjoint predicates, �� and its complement ��. Operations that were
on either the then or else paths are now guarded under the corre-
sponding predicates. For example, �� is guarded under �� and ��
is guarded under ��. Figure 1(c) lists each predicate used by the
code along with its activation frequency, which is the fraction of
(profiled) loop iterations in which the predicate evaluates to True.
It also shows the execution frequency of each operation which is
equal to the activation frequency of its guarding predicate. Note
that unconditional cmpp operations [20] (which we assume in this
example) always set the value of the destination predicate regard-
less of their guarding predicate, thus their execution frequency is
always 1.0. Figure 1(d) shows the data dependence graph for the
code in Figure 1(b). Each node shows the corresponding opera-
tion, and its outbound arcs are labeled with the operation’s latency.
Again, as shown in Table 1, each cmpp operation’s outbound arcs
are labeled with two latencies, 1 and 3. Note that the edges in the
graph are all flow dependences with the exception of the edge from
�� to 	 which is a control dependence.

The application of IMS to the example results in the II=10 sched-
ule presented in the MRT shown in Figure 2(a). The notation used
for each operation is iter:opname, where iter is the iteration to
which the operation belongs relative to the current (n��) iteration.
Since each of ten ALU operations (A1, A2, A3, A4, A5, A6,C1, C2,
C3, C4) must reserve the ALU resource at a different cycle to avoid
conflict, ResMII=10 and this schedule is optimal (RecMII=1 for
this loop). Predicated operations ��
 ��
 ��
 �� and �� are ex-
ecuted conditionally but reserve the ALU unconditionally. Conse-
quently, an ALU cycle is wasted every time the guarding predicate

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

A1: i = i + 4 if p0

M1: lv = load(i, A) if p0

C1: p1,p2 = cmpp(lv < 20) if p0

A2: a = 0 if p1

C2: p3 = cmpp(lv > 10) if p1

A3: a = lv + 2 if p3

C3: p4 = cmpp(i == 14) if p1

A4: a = lv – 4 if p4

A5: a = lv | 0x7 if p2

C4: p5 = cmpp(a==0) if p0

A6: t = a + lv if p5

M2: store(i, A, t) if p5

B: if(i < 400) goto A1 if p0

Predicates Operation

Activation Execution

Frequencies Frequencies

p1: 0.2 A1: 1.0

p2: 0.8 M1: 1.0

p3: 0.09 C1: 1.0

p4: 0.01 C2: 1.0

p5: 0.11 C3: 1.0

A2: 0.2

A5 :0.8

A3: 0.09

A4: 0.01

C4: 1.0

A6 0.11

M2: 0.11

B: 1.0

(b) Assembly code (c) Frequencies

A1A1

A4A4

C3C3

M1M1

C1C1

C2C2

C4C4

A6A6 M2M2 BB

A3A3

A5A5 A2A2

1

2

1 or 3

1 1

1 or 3

1 or 31 or 3

11

1

1 or 3

0

1 1

(d) Data dependence graph

0

0

for(i=0; i < N; i++)

{

lv = A[i];

if (lv < 20) {

a=0;

if (lv > 10) {

a = lv+2;

}

if (lv == 14) {

a = lv-4;

}

}

else {

a = lv | 0x7;

}

if (a == 0) {

t = a+lv;

A[i] = t;

}

}

(a) Source code

Figure 1: Example code segment

of its assigned operation is False. We can increase ALU utilization
and hence reduce the schedule length if we combine two or more
of these predicated operations to share the ALU in the same cycle.

DPAMS guarantees that no conflicts will occur by combining
only disjoint operations to share the same resource [23]. A DPAMS
schedule is shown in Figure 2(b). Disjoint operations A2 and A5
are scheduled in the same slot of the MRT. As a result, the ALU is
always utilized at Time 8, and the achieved schedule length is 9 cy-
cles, an 11% performance improvement over the 10 cycle baseline
schedule in Figure 2(a). Note that the ALU is still underutilized at
Times 1, 2 and 5 by operations ��, �� and ��, but none of these
operations can be combined by DPAMS.

PPAMS achieves a 6 cycle static schedule length (��������) by
also combining the operations �� and �� from the same iteration
and �� from the previous iteration to share the ALU at Time 2, and
�� with �� from two iterations earlier to share the ALU at Time
5, as shown in Figure 2(c). Note that neither of these additional
combinations is disjoint. Because �� always requires the ALU re-
source, each time at least one of operations �� and �� executes
there will be at least one conflict, causing some conflict recovery
delay, �����	
���. Operations �� and �� will also conflict and
delay the execution whenever �� executes. If ��, �� and �� al-
ways execute, there will be at least 2 cycles of delay at Time 2 and
1 cycle of delay at Time 5 of the MRT, resulting in no improvement
over DPAMS. But, we expect only 0.42 cycles of penalty on aver-
age as explained in Sections 4.1 and 4.3 and shown in the last row
of the MRT in Figure 2(c).

PPAMS thus achieves a 6.42 cycle expected schedule length
(��
�
��
� � �������� � �����	
���): a 40% performance im-
provement over DPAMS, and 55% over the baseline.

This simple example shows that allowing predicated operations
to reserve the same resource in the same time-slot can reduce the
resource requirements and static schedule length for a predicated
code segment, but will cause conflicts at run time whenever two or
more operations that are combined together have their predicates

evaluate to True in the same cycle. The goal of PPAMS is to de-
crease the ��
�
��
� schedule length by maximizing the degree of
useful overlap, subject to controlling the expected degree of con-
flict.

3. PROBABILISTIC PREDICATE-AWARE
VLIW PROCESSOR ARCHITECTURE

In this section, the probabilistic predicate-aware (PPA) architec-
ture is described. The generic predicate-aware architecture has two
categories of resources: may-use and must-use. Every resource
used after the value of the guarding predicate becomes known is
may-use and can be reserved by several predicated operations at
the same time. All the remaining resources are must-use and can
only be reserved by a single operation at a time. The categorization
rule is that every resource that is after the predicate read and oper-
ation nullification point in the pipeline is may-use. Reading predi-
cates and nullifying operations earlier allows more resources to be
may-use, which leads to shorter schedules. However accessing the
predicate register file earlier in the processor pipeline increases the
latency of the predicate defining operation which can be problem-
atic if many of the predicate defining operations lie on the critical
path of the application.

Our baseline architecture, shown in Figure 3(a), is similar to the
TI ‘C6x architecture [10], except that its unified register read and
execution stage is separated here. The baseline processor pipeline
has 6 stages: fetch, dispatch, decode, register read, execute and
write back.The predicates are read only during the execution stage.
Thus, resources in the execute stage and the preceding stages are
must-use. Only the resources in the write-back stage are may-use.

In order to convert the baseline pipeline datapath into a PPA dat-
apath, four issues must be addressed. First, nullification should be
performed earlier in the pipeline to make more may-use resources
available. Second, the cmpp latency should be kept as small as
possible. Third, a conflict resolution mechanism is required to de-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

n:C24

n-1:M2n:C13

n-1:A62

n:M1n-1:C41

n:A47

n:A36

n:C35

n:A28

n:Bn:A59

n:A10

BMATime

n:C24

n-1:M2n:C13

n-1:A62

n:M1n-1:C41

n:A47

n:A36

n:C35

n:A28

n:Bn:A59

n:A10

BMATime

n:A5

n-2:A65

n:C13

n-1:A42

n:M1n-1:A31

n:C37

n-2:M2n:C26

n-1:C44

n:Bn:A28

n:A10

BMATime

n:A5

n-2:A65

n:C13

n-1:A42

n:M1n-1:A31

n:C37

n-2:M2n:C26

n-1:C44

n:Bn:A28

n:A10

BMATime

n-2:A6

n-2:C4n-1:A4

n-1:A5

n:A1

n:Bn:C35

expected delay due to conflicts0.42

n:C13

n-1:A32

n:M1n-1:A21

n:C24

n-3:M20

BMATime

n-2:A6

n-2:C4n-1:A4

n-1:A5

n:A1

n:Bn:C35

expected delay due to conflicts0.42

n:C13

n-1:A32

n:M1n-1:A21

n:C24

n-3:M20

BMATime

(a) Baseline II=10 (b) Deterministic PAMS II=9 (c) Probabilistic PAMS IIexpected=6.42

Figure 2: Three schedules for the example code segment

PRF

REG
READ EXECUTEFETCH BACKDECODEDISPATCH

WRITE

(a) Baseline machine

stall stall conflict
recovery

conflict
detection

DECODEFETCH

Recovery Unit
Resource Conflict Detection and

PRED READ /

DISPATCH

REG
READ EXECUTE

PRF

WRITE
BACK

(b) Probabilistic predicate-aware machine

Figure 3: Baseline and predicate-aware pipeline organizations

tect and recover from conflicts. Fourth, to avoid compromising the
cycle time, the pipeline complexity should not be increased sub-
stantially. To this end, we make three main changes in the baseline
pipeline to make it predicate-aware, as shown in Figure 3(b).

Change 1: The first change is to move the predicate register file
(PRF) read to the dispatch stage. This allows nullification to occur
at the end of the dispatch stage. As a result, all the resources in
subsequent stages (general / floating-point register ports, function
units, etc.) are may-use. During the dispatch stage, the PRF is
accessed early in the cycle to read predicates for all the operations.
Then, the dispatch logic nullifies those operations guarded under
False and assigns the rest of the operations to their corresponding
function units, provided there is no conflict.

Change 2: In the baseline processor, the latency of the cmpp
operation is 1 cycle. The first proposed change above, however,
increases it to 4 cycles. Our second change is to reverse the order
of the decode and dispatch stages, thereby delaying the predicate
read by one stage, which reduces the cmpp latency to 3 cycles.
However, since decode now occurs before dispatch, the complexity
of the decode logic is increased somewhat. In the worst case, ��
(fetch width) general purpose decoders, one per operation in the
instruction word, are required. In the alternative, where decode
follows dispatch, it might be possible to use more specialized and
hence less expensive decoders.

Change 3: The third and most significant change is to add a Re-
source Conflict Detection and Recovery Unit. During the pred-
icate read and dispatch stage, if more than one of the operations
scheduled to execute on a particular function unit has its predicate
set to True, the conflict is detected and the conflict signal is set. As
a result the stall signal is sent to the fetch and decode stages, and a
recovery process is executed.

A recovery process must address two important issues: first is
how to dispatch the conflicting operations during recovery and sec-
ond is when to start dispatching these operations.

To address the first issue, we note that there are two alternative
schemes to dispatch operations to recover from such a conflict. In
the first scheme, those operations in the dispatch stage that have
True predicates are dispatched in parallel to the function units that
they were originally assigned to, and one such operation is dis-
patched to each function unit in each cycle until there are no such
operations left for that function unit. This process continues until
the entire instruction word is dispatched. This scheme results in a
simpler design, but a longer stall time than the second scheme. In
the second alternative scheme, an operation may be dispatched to
any available function unit that can serve it (rather than only to the
function unit it was originally assigned to, as in the first scheme).
This scheme will reduce the stall time, but its design is somewhat
more complex. In our experiments we use the former, simpler re-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

covery scheme. Other more complex schemes could also be con-
sidered, but are beyond the scope of this paper.

The second issue is whether the recovery itself may begin im-
mediately, in the same cycle in which a conflict is detected, or
requires additional time to initiate. To model the effect on per-
formance, a machine parameter called the conflict detection and
recovery unit latency (���) is used in the experiments. We in-
vestigate ��� values of 0 cycles, wherein the first conflicting
operation is dispatched in the conflict detection cycle itself, and 1
cycle, wherein it is dispatched one cycle later.

To address the issue of delay and complexity of the conflict de-
tection and recovery unit, we note that there already are reasons
why a dispatcher may be unable to dispatch an operation or group
of operations in a particular cycle, e.g. the input buffer of a required
execution unit may be full. The conflict described above is just one
more simple reason, and the ’stall’ or interlock mechanism it needs
to invoke is no more complex than the mechanisms that already ex-
ist in today’s microprocessors for this purpose. The stall signal is
produced by simple combinational logic; as soon as the predicates
are read early in the cycle, this logic generates the stall signal if
more than one predicate that has reserved the same resource has a
True value. This ’stall’ signal could simply be added as an addi-
tional trigger to any of those existing mechanisms to effect a stall
or fetch/decode restart, as appropriate.

The main potential performance degradation factor of our design
is that since predicate read has been moved earlier in the pipeline,
the schedule distance between a cmpp operation and its consumers
must be increased, possibly increasing the length of the critical path
in the code region, and thus degrading the performance. As shown
in Section 5, modulo scheduled loops in the benchmarks that we
examined are constrained by resources, not by latencies. Therefore,
increasing the cmpp latency has only a small overall impact on the
performance of PPAMS.

An interesting consequence of our design is that it is possible
to selectively increase the cmpp latency, so as to restrict the in-
crease in critical path length. Only some operations will see an
increased cmpp latency; all other operations will see a cmpp la-
tency of 1, which means that they will execute unconditionally on
their resources (i.e. their execution frequency is increased to 1.0).
To allow both kinds of operations to read their predicates in the
same cycle, the 1-bit wide PRF in Figure 3(b) can be simultane-
ously accessed from the execute stage, as well as the predicate read
and dispatch stage. Thus, twice as many PRF read ports are re-
quired, but they are only 1-bit wide. If this poses a design problem,
a shadow PRF could be added for access by one of these stages.

Note that in this paper we do not take advantage of this feature
of selectively increasing the cmpp latency, since modulo scheduled
loops are generally resource rather than latency bound, and extend-
ing cmpp latency has only a small impact on the overall schedule
length for most loops in our applications [23, 22]. However, for
acyclic regions, selectively varying cmpp latency for certain oper-
ations does decrease schedule length resulting in performance im-
provement [22].

4. PROBABILISTIC PREDICATE-AWARE
MODULO SCHEDULING

In this section, the details of the PPAMS algorithm are presented.
PPAMS is an extension of conventional IMS; it decreases the ex-
pected dynamic kernel schedule length by relaxing resource con-
straints. It achieves this by allowing operations to reserve the same

resource in the same cycle, while estimating and accounting for the
resulting expected delay due to conflicts.

4.1 Computing Expected Conflict Delay
A key feature of PPAMS is the method of estimating the ex-

pected delay due to conflicts when two or more predicated opera-
tions share the same resource. The example code in Figure 1 and
the machine model in Table 1 are used to demonstrate this tech-
nique.

We define an execution vector for a group of predicates as an as-
signment of a particular boolean value to each of these predicates.
The expected delay (����) for a group of predicated operations
is the sum of the expected delays due to each of the execution vec-
tors that result in a conflict. The expected delay of an execution
vector is the number of extra delay cycles required to recover from
the conflict multiplied by the probability of occurrence of this exe-
cution vector.

For example, assuming CDRL=1, the expected delay when op-
erations ��, �� and ��, guarded by the predicates ��, �� and ��,
respectively, are scheduled at the same time on a single ALU is

������� 	 ��
 �� 	 ��
 �� 	 ��

� �� � �� �
� � ��� � �
 �� � �
 �� � �

� �� � �� �
� � ��� � �
 �� � �
 �� � �

� �� � �� �
� � ��� � �
 �� � �
 �� � �

� �� � �� �
� � ��� � �
 �� � �
 �� � �

� �� � ��� � �
 �� � �
 �� � �

� �� � ��� � �
 �� � �
 �� � �

� �� � ��� � �
 �� � �
 �� � �

� �� � ��� � �
 �� � �
 �� � �

The first three terms on the right side compute the expected de-
lay for all possible execution vectors that cause exactly one conflict.
For example, when the execution vector ��� � �
 �� � �
 �� �
�
 occurs, it will cause �� and �� to conflict over the ALU, re-
sulting in 2 extra cycles of delay: 1 cycle (CDRL) to detect the
conflict, plus 2 more cycles to dispatch the two conflicting ALU
operations, minus 1 cycle to account for the fact that when there
are no conflicts, it takes exactly one cycle to dispatch all operations.
Similarly, as shown by the fourth term, to recover from conflicts in
��� � �
 �� � �
 �� � �
 will take 3 extra cycles.

Computing the Probability of an Execution Vector: To com-
pute the probability of a given execution vector, we introduce a
Predicate Relationship Graph (PRG), which is similar in concept to
the partition graph in [11] and the predicate hierarchy graph in [14].
A PRG represents the relationship between the predicates in a pred-
icated block of code. Each node in the graph corresponds to a par-
ticular predicate and is labeled with the activation frequency of this
predicate, as obtained from a profile run. There are two kinds of
edges which connect the nodes of the PRG: implication edges (I-
edges) and disjointness edges (D-edges). There is an I-edge from
predicate �� to �� if �� implies ��, i.e., whenever �� is True, �� is
also True. This means that in the original non-predicated code an
operation guarded by �� lies on any control path that passes through
an operation guarded by ��. A D-edge indicates that the two predi-
cates it connects are disjoint, i.e., whenever one of these two predi-
cates evaluates to True during execution, the other must evaluate to
False.

One important simplifying assumption that we make in this pa-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

p0 (1.0)p0 (1.0)

p1 (0.2)p1 (0.2) p2 (0.8)p2 (0.8) p5 (0.11)

p3 (0.09) p4 (0.01)

I II

I I

D

Figure 4: Predicate Relationship Graph

per is the independence assumption. This assumption states that
any two predicates not connected by an edge are deemed to be in-
dependent, that is the probability that one of them evaluates to True
(or False) is the same, regardless of the value of the other predicate.
Note that any two predicates defined in different loop iterations are
never connected by an edge and therefore are always assumed to be
independent.

The PRG for the example code of Figure 1 is shown in Figure 4.
The root of PRG is predicate �� which always evaluates to True
during the execution of this code, hence it has a frequency of 1.0.
Obviously, �� implies ��, as do �� and ��. �� implies �� since the
cmpp operation C2 may only set �� if its guarding predicate, ��, is
True (and its condition, �� � ��, is also True); likewise, �� implies
��. Since implication is a transitive relation, we avoid cluttering the
graph with redundant I-edges, e.g., we do not need to include an I-
edge from �� to �� since there is an I-edge from �� to �� and one
from �� to ��. There is a D-edge between �� and �� since these
two predicates (as defined in C1) are disjoint. Furthermore, since
�� and �� imply ��, they must also be disjoint from ��. Therefore,
the corresponding D-edges between �� and �� as well as �� and ��
are not shown, as they can be inferred from the graph.

We use the PRG, the independence assumption, and techniques
from elementary probability theory to compute the probability of
occurrence of an execution vector. We demonstrate this computa-
tion with a simple representative example, the formal comprehen-
sive derivation is presented in [22].

Suppose ��, ��, and �� of the example are scheduled in the
same row of an MRT. One probability we would need to compute
is � ��� � �
 �� � �
 �� � �
 for the case that �� and �� ex-
ecute, but �� does not. Furthermore, suppose that �� and �� are
scheduled at the same time in the SRT, but �� is scheduled at a
different time in the SRT, i.e., �� and �� in the MRT row are from
the same loop iteration, but �� is from a different iteration. Since
predicates from different iterations are assumed to be independent,
� ��� � �
 �� � �
 �� � �
 � � ��� � �
 �� � �
� � ��� �
�
. To compute � ��� � �
 �� � �
, we notice from the PRG that
�� evaluates to True and �� evaluates to False, when one of two
events occurs: (i) �� evaluates to True, �� evaluates to True and ��
evaluates to False, or (ii) �� evaluates to True and �� evaluates to
False (in which case �� is guaranteed to be False by the implication
relationship). Hence, � ��� � �
 �� � �
 � � ��� � �
 �� �
�
 �� � �
 � � ��� � �
 �� � �
. We use the definition of con-
ditional probability to compute each of the terms. For the second
term, � ��� � �
 �� � �
 � � ��� � � ��� � �
� � ��� � �
.
For the first term, � ��� � �
 �� � �
 �� � �
 � � ��� �

� � �� � �
 �� � �
 � � ��� � �
 �� � �
 � � ��� � � �
�� � �
 � � ��� � � � �� � �
 � � ���
. � ��� � �
 is
measured as the fraction of all profiled loop iterations for which
�� evaluates to True. � ��� � � ��� � �
 is the conditional edge
transition probability that �� evaluates to True, given �� evaluates
to True and is equal to � ���� �

� ���� �
. Furthermore, � ��� � � ��� �

�
 � � � � ���� ��
� ���� �

. Hence, by plugging in the values, we obtain,
� ��� � �
 �� � �
 �� � �
 � � ��� � �
 �� � �
� � ��� �

�
 � � ����������
���

� ���
���

� ���� ����� ��������
���

� ���� ����� �
������� � ���
� ���� � ����.

Certain execution vectors are illegal since they will never occur,
and hence have 0 probability. For example, � ��� � �
 �� � �
 �
� since �� is disjoint from �� as indicated by the D-edge in the
PRG. As another example, it is impossible for both �� and �� to
execute and �� not to execute if all three operations are from the
same iteration; this is due to the fact that �� and �� are guarded
under the same predicate ��, and clearly � ��� � �
 �� � �
 �� �
�
 � �.

We developed a general probabilistic model to compute the prob-
ability of occurrence of an arbitrary execution vector in terms of the
PRG edge transition probabilities. This model takes advantage of
the three possible relationships between a pair of predicates: dis-
jointness, implication, and lastly independence (which we assume
whenever neither disjointness nor implication has been found).

Finally, note that the computation complexity of the probabil-
ity of occurence of a given execution vector can take time that is
exponential in the size of the execution vector, in the worst case.
However, the actual compilation time was small, since in practice
our execution vector length rarely exceeded three.

4.2 Main PPAMS Extensions
The PPAMS algorithm uses the expected delay computation

technique to try to find the smallest expected initiation interval
(��
�
��
�) for which a valid schedule can be found. ��
�
��
� �
�������� � �����	
���, where �������� is the static initiation inter-
val when the delay due to conflicts is ignored, and �����	
��� is
the expected delay due to conflicts. The following describes our
main changes to the baseline iterative modulo scheduling (IMS) to
support PPAMS.

Computing ResMII: IMS computes the resource-constrained
lower bound (ResMII) by unconditionally adding the number of
times that each operation uses a particular type of resource to that
resource’s usage count, regardless of the operation’s guarding pred-
icate. The cumulative usage count for the most heavily used re-
source determines ResMII for IMS. For our example in Figure 1,
������ � ��, since there are 10 ALU operations and only a
single ALU unit.

For PPAMS, a similar calculation is done, except that an opera-
tion is allowed to use a particular may-use resource only a fraction
of the time, based on its execution frequency. When an operation
uses a resource, this resource’s usage count is only incremented by
operation’s execution frequency. Thus, continuing with the exam-
ple, the probabilistic predicate-aware resource-constrained lower
bound, PPAMS ������ � �������
 � ������
 � ������
 �
������
��������
�������
��������
�������
�������
�
�������

���ALU
 � ����, which is the execution frequency
summed over all ALU operations. Note that un-predicated opera-
tions have a frequency of 1.0. Finally, since the must-use resources
are reserved regardless of guarding predicate values, their usage
count is computed as in the baseline case. The lower bound ob-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

double ppams_Main()

{

IIlow = max(ppamsResMII, ppamsRecMII);

IIhigh = max(baseResMII, baseRecMII);

while(IIhigh – IIlow > smalldelta) {

IImiddle = (IIhigh + IIlow) / 2;

if (ppams_FindSchedule(IImiddle) == true)

IIhigh = IImiddle;

else

IIlow = IImiddle;

}

return IIhigh;

}

(a)

bool ppams_FindSchedule(IIexpected)

{

for(IIstatic = floor(max(WidthResMII, ppamsRecMII));

IIstatic <= floor(IIexpected); IIstatic++) {

IICflDelay = IIexpected - IICflDelay;

if(ppams_IterativeScheduler(IIstatic, IICflDelay)==true)

return true;

}

return false;

}

(b)

Figure 5: Main PPAMS scheduling routines

tained is likely to be an optimistic estimate of the actual schedule
length since it does not account for potential conflicts that may oc-
cur.

Main Scheduler: The main PPAMS driver (shown in Fig-
ure 5(a) uses a binary search method to find the smallest value of
��
�
��
� for which a valid schedule can be found. The low (high)
bound, ����� (������) is computed as the maximum of the ppams
(baseline) ������ and ������ . Note that ����������� is
never less than ���������� since PPAMS requires cmpp latency
to be increased, which may increase the length of the critical path,
but never decreases it. The while loop in Figure 5(a) calls the
ppams FindSchedule routine which tries to find a valid schedule
for �������
 - a halfway point between ����� and ������. If a
schedule is found, ������ is reduced to �������
, otherwise �����
is increased to �������
. These steps are repeated until the differ-
ence between ������ and ����� drop below a small threshold value
(����������), at which time the ��
�
��
� value is set equal to the
current value of ������.

ppams FindSchedule (Figure 5(b)) tries to find a valid schedule
for ��
�
��
� (the sum of �������� and �����	
���). In fact, it is
possible for several valid schedules of length ��
�
��
� to exist for
several different values of �������� and �����	
��� as long as both
add up to ��
�
��
�. Therefore, we vary �������� in the loop start-
ing from the ceiling of the maximum of the width resource- and the
recurrence-constrained lower bound up to the floor of ��
�
��
�.
The width resource-constrained lower bound, WidthResMII, is de-
fined as number of operations in the loop body

machine fetch width (FW) and is a hard limit on ��������
for a machine of the given fetch width (FW). Thus, �������� can
never be less than ����������� , and since �������� must be
an integer, it cannot be less than ceiling(WidthResMII). ��������
is also constrained by the recurrence-constrained lower bound,
����������� , computed from the data dependence graph af-
ter the cmpp latency extension phase. The extension of cmpp la-
tencies may increase the length of the critical path compared with
the baseline code. Note that with PPAMS, as opposed to base-
line modulo scheduling, �������� can be less than ������ . In
addition, since we are only interested in schedules with �� �
��
�
��
�, the �������� term of a schedule of interest cannot ex-
ceed floor(��
�
��
�).

For each value of ��������, the corresponding maximum al-

lowed value of �����	
��� is computed (as the difference be-
tween ��
�
��
� and ��������) and the ppams IterativeScheduler
is called with both values passed as parameters. The
ppams IterativeScheduler returns True if a valid schedule is
found, in which case ppams FindSchedule also returns the value
True. Otherwise, the next combination of �������� and �����	
���

is tried, until either the ppams IterativeScheduler returns True
or the for loop terminates. If the loop terminates, no valid
schedule has been found for a given value of ��
�
��
�, and
ppams FindSchedule returns False to the ppams Main driver.

ppams IterativeScheduler(��������, �����	
���) is a slightly
modified version of the baseline iterative modulo scheduler algo-
rithm [16] which iteratively schedules and unschedules the opera-
tions of the loop until either a valid schedule is found or the max-
imum number of allowed scheduling steps (a run-time budget) is
exceeded. In PPAMS, the scheduler tries to place operation �� at
Time of the MRT that is chosen so that the increase in total esti-
mated conflict delay (i.e., the summation of the estimated conflict
delay over all rows of the MRT) is minimized. If an operation can-
not be placed without exceeding the delay constraint �����	
���,
a backtrack step is executed in which some operations are chosen
to be unscheduled (to be tried again later) so as to allow the current
�� to be scheduled without violating the delay constraint.

4.3 Example Application of PPAMS
To illustrate the application of the algorithm, PPAMS is applied

to the example in Figure 1 with the machine model in Table 1, a
cmpp latency of 3 cycles, and a fetch width equal to the number of
function units (3).

We show the details of a single call to the
ppams IterativeScheduler function. The goal is to find a
valid 6 cycle (��������=6) schedule which also satisfies the delay
constraint �����	
��� � ���� cycles. As each operation is
scheduled at some time slot, the appropriate resource is marked at
that time slot in both the SRT and MRT. In addition, the current
delay values in the �����	
��� column are updated: the overall
schedule length, which is �������� plus the sum of the ���!����"
entries over all rows is shown in the last row of the MRT. We use
delay due to conflict computation method from Section 4.1 and
the PRG in Figure 4 to compute the value of �����	
��� at each

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

21

A5?p2

A4?p4

Schedule Reservation Table

14

0.0213

0.0212

0.0211

0.0210

0.029

0.0018A3?p38

A2?p17

19

18

17

CflDelay

20

C13

2

M11

6

C35

C24

15

16

A10

M

23

22

ATime

n-1:A4

n-1:A5

Modulo Reservation Table

0n:A10

expected delay due to conflicts0.0018

0n:C35

0n:C24

0n:C13

0.0018n-1:A32

0n:M1n-1:A21

CflDelayMATime

(a) Scheduling A4 (b) Scheduling C4

21

A4?p4

A5?p2

Schedule Reservation Table

0.1991C414

2.013

2.012

2.011

2.010

2.09

A3?p38

A2?p17

19

18

17

CflDelay

20

C13

2

M11

6

C35

C24

15

16

A10

M

23

22

ATime

n-1:A5

n-2:C4n-1:A4

Modulo Reservation Table

n:A1 00

expected delay due to conflicts0.1991

0n:C35

0n:C24

0n:C13

0.1991n-1:A32

0n:M1n-1:A21

CflDelayMATime

(c) Scheduling A6

0.2221

A4?p4

A5?p2

Schedule Reservation Table

C414

13

12

11

10

9

A3?p38

A2?p17

0.2219

0.22M218

0.22A617

0.22

0.22

invalid

CflDelay

20

C13

2

M11

6

C35

C24

15

16

A10

M

23

22

ATime

n-2:A6

n-1:A5

n-2:C4n-1:A4

Modulo Reservation Table

n:A1 0n-3:M20

expected delay due to conflicts0.4191

0.22n:C35

0n:C24

0n:C13

0.1991n-1:A32

0n:M1n-1:A21

CflDelayMATime

Figure 6: PPAMS Scheduling of the example in Figure 1 for ��������=6 and �����	
���=0.42

step. We omit the 	-resource column to save space: in traditional
modulo scheduling of the counter-based loops, a single branch
operation 	� is always scheduled first within the first �� rows of
the SRT and never causes conflicts.

Figure 6(a) shows the partial SRT and MRT with operations
��, ��, ��, ��, ��, �� and �� and �� already scheduled, and
operation �� is being scheduled. Note that the partial schedule
(before �� is scheduled) has no conflicts since each ALU operation
occupies a separate entry in the MRT, except for �� and �� which
are disjoint. The earliest schedule time for �� (in the SRT) is Time
8 since �� is dependent on the three-cycle �� operation scheduled
at Time 5. If �� is scheduled at Time 8, it will share the ALU
with �� from the same iteration and will result in 0.0018 cycles of
expected delay due to conflict, namely � recovery cycles�� ��� �
�
 �� � �
 � ����������� � ������, as shown in the rightmost
column. Scheduling �� at any of Times 9 through 12 of the SRT
would result in 0.02 cycles of delay (� recovery cycles � � ��� �
�
 � � � ���� � ����), since the operations scheduled at each of
these times in the MRT always execute (execution frequency = 1.0).
Scheduling �� at Time 13 will also result in 0.02 cycles of delay
since �� and �� are a complete set of disjoint operations (they are
guarded under complementary predicates). The scheduler places
�� at Time 8 of the SRT (Time 2 of the MRT) which causes the
smallest increase in the overall conflict delay for the given partial

schedule.
Operation �� is scheduled similarly, as shown in Figure 6(b),

as is operation ��, resulting in the final schedule shown in Fig-
ure 6(c). The overall delay is 0.4191 cycles (0.1991 cycles from
Time 2 of the MRT plus 0.22 cycles from Time 5) which results in
a valid schedule that satisfies both resource and delay constraints.

5. PERFORMANCE EVALUATION
We use an existing VLIW compiler toolset, Trimaran [25], to

evaluate the effectiveness of PPAMS. This compiler system is ca-
pable of performing if-conversion with hyperblock formation [14],
modulo scheduling [16], and predicate analysis [11], among other
back-end optimizations. We implemented the bulk of our optimiza-
tions within the resource management module of ELCOR (Tri-
maran’s back-end compiler). We also use the predicate query sys-
tem to analyze predicated code and construct predicate relationship
graphs to compute the expected delay due to conflicts as described
in Section 4.1.

We use the notation (F,I,FP,M,B,C, D) to represent the proces-
sor in this study. F is fetch width, I - number integer units, FP -
number of floating-point units, M - number of memory units, B -
number of branch units, C - latency of the predicate defining op-
eration (cmpp), and D is conflict detection latency, or the number

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

% ppa-ready

Benchmark regions BRec BRes BII Besc Brr DRec DRes DII Desc Drr PRec PRes PIIs PIIc PIId %Error Pesc Prr

cjpeg 6.81 1.31 6.49 6.49 2.00 10.73 1.92 5.89 6.35 2.44 13.57 1.92 4.69 5.50 5.69 5.66 0.53 4.53 17.70

djpeg 48.03 1.00 58.64 58.64 1.00 28.38 1.00 53.17 53.66 1.01 29.89 1.00 42.69 46.22 47.56 47.67 -0.23 2.50 48.26

epic 3.37 2.16 21.02 21.41 1.77 12.78 2.93 19.10 19.48 2.00 13.86 2.93 16.38 12.39 16.44 16.33 0.67 7.86 16.85

unepic 53.45 1.00 13.27 13.27 1.85 19.31 1.00 12.84 12.84 2.70 21.70 1.00 10.52 10.45 10.82 11.08 -2.40 3.14 28.37

g721encode 39.70 1.00 30.00 30.00 1.00 12.00 1.00 21.00 23.50 3.00 21.50 1.00 20.24 18.50 21.20 19.36 8.68 4.50 27.00

g721decode 39.63 1.00 30.00 30.00 1.00 12.00 1.00 21.00 23.00 4.00 24.00 1.00 20.26 19.50 21.52 19.87 7.67 4.50 25.50

ghostscript 20.08 7.87 43.13 44.10 1.02 20.85 7.87 33.35 34.33 2.02 23.79 7.87 31.35 30.38 31.39 31.37 0.06 3.97 45.26

gsmdecode 89.04 7.89 27.66 27.85 1.10 13.85 11.39 24.88 25.66 1.97 18.14 11.39 21.40 19.22 22.72 22.61 0.48 7.62 49.18

gsmencode 95.34 7.81 73.88 74.34 1.00 16.50 8.86 46.45 54.49 1.93 17.69 8.86 45.30 49.37 52.63 52.58 0.10 3.41 33.55

mesamipmap 38.12 1.00 22.00 22.00 1.67 20.67 1.00 16.33 16.33 2.67 27.00 1.00 15.92 16.00 16.33 16.32 0.06 3.00 24.33

mpeg2dec 33.43 1.00 28.17 28.17 1.50 17.02 1.00 25.69 25.69 1.85 15.90 1.00 18.58 19.63 21.60 21.68 -0.37 3.26 30.82

mpeg2enc 76.85 2.96 20.21 20.21 1.01 8.24 4.91 17.26 17.26 1.99 10.21 4.91 12.34 12.30 13.86 13.86 0.00 4.08 18.61

pegwitdec 55.53 1.96 20.51 20.51 0.08 13.94 1.96 18.56 18.56 1.08 14.00 1.96 12.39 12.75 13.90 13.96 -0.43 5.93 38.16

pegwitenc 69.14 1.61 19.33 19.33 0.96 13.36 1.61 18.26 18.26 1.60 16.18 1.61 12.66 13.30 13.60 13.97 -2.72 4.97 29.37

rasta 8.17 3.02 6.80 6.81 1.25 7.42 4.14 6.53 6.68 1.84 7.86 4.14 4.85 5.56 5.89 5.94 -0.85 4.66 16.18

rawcaudio 99.82 20.00 24.00 26.00 1.00 12.00 20.00 22.00 25.00 3.00 20.00 20.00 17.13 25.00 25.00 25.00 0.00 1.00 17.00

rawdaudio 99.83 6.00 20.00 20.00 1.00 13.00 10.00 18.00 18.00 3.00 18.00 10.00 14.21 15.00 16.12 16.09 0.19 11.00 42.00

Avg. (4-wide) 51.55 4.03 27.36 27.59 1.19 14.83 5.39 22.37 23.48 2.24 18.43 5.39 18.88 19.47 20.96 20.79 1.59 4.70 29.89

Avg. (6-wide) 54.18 4.03 13.90 14.63 2.15 18.82 5.39 12.36 14.09 3.29 23.71 5.39 11.11 13.34 13.48 21.68 0.87 4.33 26.24

Base DPAMS PPAMS

Table 2: Various scheduling measurements for 4-wide base, dpas and ppas machines, cmpp latency is 3 cycles and CDRL is 0 cycles

of cycles after the conflict is detected in which the recovery mech-
anism dispatches the first conflicting operation. We use two base
processors in our study: (4,2,1,1,1,1, -) and (6,4,2,1,1,1, -) called
����
��
 and ����
��
, respectively. In addition, we assumed 64
scalar and 64 rotating registers in our experiments and operation
latencies that match the Itanium processor.

Each baseline processor ����
��
 is compared with two corre-
sponding probabilistic predicate-aware processors �����
 �
 and
�����
 �
 with the same number of resources as the baseline pro-
cessor, but conflict detection latency of zero and one cycles, respec-
tively. We also compare the performance of the baseline proces-
sor ����
��
 with the corresponding deterministic predicate-aware
processor ������
. As mentioned in Section 2, DPAMS avoids
conflicts by conservatively combining only provably disjoint oper-
ations. In addition, we assume that if an operation’s predicate is to
be read early (in the predicate read and dispatch stage), the oper-
ation must be separated from its corresponding cmpp by at least 3
cycles for both deterministic and probabilistic predicate-aware ma-
chines. All cmpp latencies are increased to 3 cycles: as our results
show, most of the loops are resource bound (rather than recurrence
bound), and therefore the results have little sensitivity to the cmpp
latency.

We evaluated the set of 17 MediaBench [13] applications, ap-
plying deterministic and probabilistic predicate-aware scheduling
optimizations to their modulo scheduled loops. Clearly, PPAMS
can only benefit if-converted regions of code that contain at least
one if-then clause, including loops with CASE statements, and will
be ineffective for other code regions. We call these regions ppa-
ready). There are total of 130 ppa-ready loops. All the remaining
loops are scheduled using a conventional baseline modulo sched-
uler.

5.1 Evaluation Results
Table 2 shows various scheduling measurements for P���
(4),

P���(4) and P��(4,0) machines. For a given application, each
measurement is an average over all ppa-ready loops in this appli-
cation weighted by their execution frequency. Column 1 lists all
the benchmarks. The second to last row of the table, Avg. (4-
wide), shows the average results for a 4-wide machine, and the last
row, Avg. (6-wide), shows the average results for a 6-wide ma-
chine. Column 2 shows the percent of dynamic operations that lie
in ppa-ready cyclic regions (loops with at least one predicated op-

eration) for a given application. On average, 52% of operations
are from such regions. Columns BRec, DRec and PRec show the
������ for the three schedulers. As expected, for some appli-
cations (epic, gsmdecode, gsmencode, mpeg2enc, rasta, rawcaudio
and rawdaudio) ������ increases for both DPAMS and PPAMS.
This happens because the predicate-aware pipelines require that the
cmpp latency be increased to support early discarding of operations
predicated on a False predicate. For these applications, some of the
cmpps lie on the critical recurrence cycles, thus the increased cmpp
latency increases RecMII. We also see that for most of the applica-
tions ������ is not a limiting factor to performance for all three
schedulers because it is much less than ������ .

Columns labeled BRes, DRes and PRes show the value of
������ for the three schedulers, respectively. As explained
in Section 4.2, the baseline scheduler increments the resource us-
age by 1 regardless of the operation’s guarding predicate and its
execution frequency. DPAMS increments the resource usage count
by 1 per group of disjoint operations. Many ppa-ready loops
have a large number of if-then-else statements; DPAMS reduces
their ������ on average by 22%. PPAMS further decreases the
������ by an average of 15%, with respect to DPAMS, by in-
crementing the resource usage count by the operation’s execution
frequency. Note that for some of the benchmarks, such as gsmen-
code and mesamipmap, both DPAMS and PPAMS result in similar
������ . This is due to the fact that these applications contain
a number of dominating loops which consist primarily of a large
number of well balanced if-then-else statements.

Columns labeled BII, DII, and PIIs show the �� for the three
schedulers. For PPAMS, ���� is a static �� that does not account
for the delay due to conflicts. PPAMS reduces the �� by 17%
with respect to DPAMS, since it allows more flexible operation
combining than DPAMS. As the example in Section 4.3 demon-
strated, PPAMS can combine any operations, both disjoint and
non-disjoint, from the same or different loop iterations, whereas
DPAMS can only combine disjoint operations from a single loop
iteration.

This flexibility in combining may, however, result in an addi-
tional delay due to conflict (�����	
���). The column labeled
PIIc shows the compiler estimate of the expected initiation inter-
val (��
�
��
�), which does include �����	
���. Based on the
formula ��
�
��
� � �������� � �����	
���, there are two ways
to achieve a given ��
�
��
�: either by allowing more sharing

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

cj
peg

djp
eg

ep
ic

unep
ic

g72
1e

nco
d
e

g72
1d

ec
od

e

ghos
ts

cr
ip

t

gsm
dec

od
e

gsm
en

co
de

m
es

am
ip

m
ap

m
peg

2d
ec

m
peg

2e
nc

peg
w
it
dec

peg
w
it
en

c
ra

st
a

ra
w

ca
udio

ra
w

daudio

A
ve

ra
ge

DPAMS(4) PPAMS(4,1) PPAMS(4,0)

(a) Speedup of P��(4,0/1) and P���(4) over P���
(4)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

cj
peg

djp
eg

ep
ic

unep
ic

g72
1e

nco
d
e

g72
1d

ec
od

e

ghos
ts

cr
ip

t

gsm
dec

od
e

gsm
en

co
de

m
es

am
ip

m
ap

m
peg

2d
ec

m
peg

2e
nc

peg
w
it
dec

peg
w
it
en

c
ra

st
a

ra
w

ca
udio

ra
w

daudio

ave
ra

ge

DPAMS(6) PPAMS(6,1) PPAMS(6,0)

(b) Speedup of P��(6,0/1) and P���(6) over P���
(6)

Figure 7: Speedup for cyclic regions alone

with tighter operation scheduling, which decreases �������� but in-
creases �����	
���, or by allowing less sharing which increases
�������� but decreases �����	
���. For example with epic, PPAMS
chooses the first approach and achieves an �������� of 12.39 and
�����	
��� of 4.05 (16.44 - 12.39). Conversely for unepic, PPAMS
chooses the second approach and achieves an �������� of 10.45 and
�����	
��� of 0.37 (10.82-10.45).

Columns labeled PIId and %Error show the achieved run-
time initiation interval (���������), and the relative error be-
tween ��������� and ��
�
��
� computed as ���������� �
��
�
��
�
����������. Note that for the last (’average’) row, we
show the average of the absolute values of the relative errors to
avoid mutual cancellation of the negative and positive errors. We
see that for most of the applications the error is quite small (less
than 3%). However, in g721encode, the error is 8.7%, and 7.7%
in g721decode. This happens because some of the predicates of
operations that map to the same resource violate the independence
assumption that the compiler made during scheduling. These pred-
icates turn out to be correlated and result in more run-time conflict
than was originally estimated by the compiler.

Columns labeled Besc, Desc and Pesc show the size of the epi-
logue (in terms of its stage count) of the modulo scheduled loops for
the three schedulers. Epilogue stage count (���) is defined as the
ceiling of the length of the loop schedule in the SRT divided by the
��������. We can see that on average DPAMS increases the baseline
schedule epilogue by a factor of 1.5, and PPAMS doubles the base-
line schedule epilogue. The reason for this increase in the epilogue
size is twofold: first, as cmpp latency increases, the SRT schedule
length increases, and second, both DPAMS and PPAMS intention-
ally stretch the schedule by moving operations further away from
their producers to allow more aggressive combining.

Finally, columns labeled Brr, Drr and Prr show the average num-
ber of rotating registers [7] required by each of the three schemes.
Rotating registers are used to allocate variables with multiple life-
times, which occur when a variable is simultaneously live in several
loop iterations [19]. The farther away the latest consumer is sched-
uled from its producer, the more rotating registers the producer will
require. Hence, the increase in the number of required rotating reg-
isters that we see with DPAMS and PPAMS happens for the same

two reasons that cause the increase in the size of the epilogue for
these two schemes. However, despite the increased demand for ro-
tating registers with DPAMS and PPAMS, the 64 rotating registers
assumed in our experiments are enough for almost all loops. In the
very few cases in which the optimum loop schedule requires more
than 64 rotating registers, the expected initiation interval of the loop
is increased in order to reduce the rotating register requirement.

The last row summarizes similar data for P���
(6), P���(6) and
P��(6,0) machines for which conclusions similar to those for the
4-wide machine can be drawn. However, the 6-wide predicate-
aware machine with 4 integer units has more resources and there-
fore achieves less benefit from operation sharing than the equiva-
lent 4-wide machine with 2 integer units. This explains the lower
performance gain with DPAMS and PPAMS for the 6-wide ma-
chines.

Figure 7 shows the actual speedups achieved by DPAMS and
PPAMS on the cyclic regions alone. The leftmost bars of Fig-
ure 7(a) show the speedup achieved by the 4-wide DPAMS ma-
chine over the baseline machine. The middle and rightmost bars
show the speedup achieved by P��(4,1) and P��(4,0), respec-
tively, over the 4-wide baseline machine. Figure 7(b) shows similar
data for the 6-wide machines. We can see that for some of the ap-
plications, such as g271decode and g721encode, the performance
drops for both DPAMS and PPAMS on both 4- and 6-wide ma-
chines. However, from Table 2 we see that the achieved �� with
either predicate-aware technique is better than �� for the baseline
machine. This behavior is due to the large size of the epilogue pro-
duced by both schemes and the relatively short trip count of the
loops in these applications. The run-time of a modulo scheduled
loop with trip count # is equal to �# � ���
� �� . If # is small, a
large ��� can have significant impact on overall loop performance.
A short trip count loop with larger �� and shorter epilogue may
outperform the same loop when scheduled with a smaller �� and
longer epilogue, as is the case here.

On average a 4(6)-wide PPAMS processor with conflict detec-
tion latency of 0 cycles performs 10%(3.6%) better than a 4(6)-
wide DPAMS machine, and 20%(8%) better than the correspond-
ing baseline machine. We also notice that a 4(6)-wide PPAMS
processor with a conflict detection latency of 0 cycles performs

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

0.9
0.95

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45

cj
peg

djp
eg

ep
ic

unep
ic

g72
1en

co
de

g72
1dec

ode

ghost
scr

ip
t

gsm
dec

ode

gsm
en

co
de

m
es

am
ip

m
ap

m
peg

2d
ec

m
peg

2e
nc

peg
w
itd

ec

peg
w
ite

nc
ra

sta

ra
w
cau

dio

ra
w
daudio

A
ver

ag
e

A
ver

ag
e

(D
PA

M
S)

PPAMS(4,0) over BASE(4) PPAMS(6,0) over BASE(6)

Figure 8: Overall benchmark speedup with PPAMS

5%(1)% better than the corresponding PPAMS processor with a
conflict detection latency of 1 cycle. Higher conflict detection la-
tency has more impact on the 4-wide PPAMS processor than on
the 6-wide PPAMS processor because, as said above, the 6-wide
machine has more resources than the 4-wide machine and thus has
less resource sharing and fewer conflicts.

Finally, Figure 8 shows the overall speedup due to PPAMS for
the entire application. The left bar shows the speedup of the 4-wide
PPAMS processor, P��(4,0), over the corresponding baseline
processor, �����
, for each application. The right bar shows sim-
ilar data for the 6-wide PPAMS processor, P��(6,0). As shown
by the two “Average” bars, the average total application speedup
is 10% for the 4-wide machine and 5% for the 6-wide machine.
The speedup achieved on the entire application is smaller than the
speedup achieved on pa-ready cyclic regions alone, since as col-
umn 2 of Table 2 shows, these regions constitute on average only
52% of the total application baseline execution time. The two right-
most bars, “Average (DPAMS)”, show the corresponding speedups
over the baseline for the DPAMS processors, namely DPAMS pro-
cessor achieves 5% speedup for the 4-wide machine, and 2.2% for
6-wide. We see that on average, for the entire application, the 4(6)-
wide PPAMS processor outperforms the corresponding 4(6)-wide
DPAMS processor by 5%(2.28%).

6. RELATED WORK
Software pipelining is a well studied technique for scheduling

loops [3, 18, 17, 5, 9, 12, 4]. A number of techniques were pro-
posed in the past to improve software pipeline schedules of loops
with internal control flow [1, 8, 21]. Below we describe the tech-
niques that are most relevant to our work.

Hierarchical reduction [12] collapses all conditional constructs
into a single operation, modulo schedules the resulting straight-
line code, and then regenerates all conditional constructs. All
Path Pipelining [24] pipelines each path separately using a soft-
ware pipelining technique for straight-line loops and then merges
the pipeline kernels of the paths.

Enhanced Modulo Scheduling [27] initially modulo schedules
predicated code in which disjoint operations are allowed to share
resources. This is similar to both the PPAMS and DPAMS tech-

niques [23]. However, PPAMS does not require the sharing oper-
ations to be disjoint, whereas the two other schemes do. In addi-
tion, Enhanced Modulo Scheduling assumes no hardware support
for predication. Therefore, in the next step the control flow is regen-
erated from the intermediate schedule to obtain the final pipelined
schedule. The intermediate schedule is then discarded; the idea of
executing the shared-resource schedule with predicate-aware hard-
ware is not explored in [27].

The advantage of the techniques in [12, 24, 27] (with an excep-
tion of the DPAMS technique) is that they do not assume any spe-
cial hardware support in the form of predication, but as a result they
suffer from significant code growth in the loop kernel.

Modulo Scheduling with Multiple Initiation Intervals [28]
schedules if-converted code so that control paths with higher ex-
ecution frequencies (assigned based upon dynamic profiling of the
loop) have shorter IIs than paths with lower frequencies. Predi-
cated operations are used to execute the correct operations and the
loop-back branch based upon which path is actually executed dy-
namically. This technique can heavily penalize the performance of
some of the paths (and therefore overall performance) if the execu-
tion paths have similar frequencies.

7. CONCLUSIONS
We have proposed and evaluated a new probabilistic predicate-

aware scheduling technique that can achieve better schedules on
predicated cyclic code regions by reducing wasted resources in
VLIW processors with predicated execution. To this end, we have
made the following three contributions. First, we proposed a gen-
eral concept of using the compiler to derive conflict-conscious
schedules. This enables arbitrary (and not just provably disjoint)
predicated operations to share the same resource in the same cycle.
Second, we developed a probabilistic delay due to conflicts model
that constructs and analyzes the predicate relationship graph for
arbitrary predicated operations in order to derive the expected con-
flict delay. Third, we proposed a modulo scheduling algorithm that
uses this delay model in conjunction with binary search method to
compute the expected II in the face of resource conflicts, and find a
schedule with minimal expected II.

The probabilistic predicate aware modulo schedulers have been

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

implemented and evaluated on the Mediabench application suite.
The overall results show an average performance gain of 10% and
5% for 4-issue and 6-issue VLIW processors, respectively. For
loops, probabilistic predicate-aware scheduling achieves an aver-
age gain of 20% and 8% for the same processors.

8. ACKNOWLEDGMENTS
We thank Joel Emer, Trygve Fossum, and the anonymous ref-

erees for their advice and helpful comments. This research was
supported in part by the DARPA/MARCO C2S2 Research Center
and equipment donated by Intel Corporation.

9. REFERENCES
[1] A. Aiken and A. Nicolau. Perfect pipelining: a new loop

parallelization technique. In Proceedings of the 1988
European Symposium on Programming, pages 221– 235,
1988.

[2] J. Allen, K. Kennedy, C. Porterfield, and J. Warren.
Conversion of control dependence to data dependence. In
Proceedings of Tenth Annual ACM Symposium on Principles
of Programming Languages, pages 143–180, Jan. 1983.

[3] A. Charlesworth. An approach to scientific array processing:
the architectural design of the ap-120b/fps-164 family. IEEE
Computer, 14(9):18–27, Sept. 1981.

[4] J. Codina, J. Llosa, and A. Gonzalez. A comparative study of
modulo scheduling techniques. In Proceedings of the 16th
international conference on Supercomputing, pages 97– 106,
2002.

[5] R. G. Cytron. Compiler-time Scheduling and Optimization
for Asynchronous Machines. Dept. of Computer Science
Report UIUCDCS-R-84-1177, University of Illinois at
Urbana-Champaign, Urbana, IL, 1984.

[6] E. Davidson, L. Shar, A. Thomas, and J. Patel. Effective
control for pipelined computers. In Proceedings of
COMPCON, pages 181–184, Feb. 1975.

[7] J. Dehnert and R. Towle. Compiling for the Cydra 5. Journal
of Supercomputing, 7(1):181–227, May 1993.

[8] K. Ebcioglu. A Compilation Technique for Software
Pipelining of Loops with Conditional Jumps. In Proceedings
20th Workshop on Microprogramming, pages 69– 79, Dec.
1988.

[9] P. Y.-T. Hsu. Highly Concurrent Scalar Processing. PhD
Dissertation, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1986.

[10] T. Instruments. TMS320C62x/67x CPU and Instruction Set
Reference Guide.
http://www-s.ti.com/sc/psheets/spru189f/spru189f.pdf, 1998.

[11] R. Johnson and M. Schlansker. Analysis techniques for
predicated code. In Proceedings of the 29th Annual
International Symposium on Microarchitecture, pages
100–113, Dec. 1996.

[12] M. Lam. Software pipelining: an effective scheduling
technique for VLIW machines. In Proceedings of the ACM
SIGPLAN ’88 Conference on Programming Language
Design and Implementation, pages 318–327, 1988.

[13] C. Lee, M. Potkonjak, and W. Mangione-Smith.
Mediabench: a tool for evaluating and synthesizing
multimedia and communications systems. In Proceedings of

the 30th Annual International Symposium on
Microarchitecture, pages 330–335, Dec. 1997.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated
execution using the hyperblock. In Proceedings of the 25th
International Symposium on Microarchitecture, pages
45–54, December 1992.

[15] J. Park and M. Schlansker. On predicated execution. HP
Laboratories Technical Report HPL-91-58, 1991.

[16] B. R. Rau. Iterative modulo scheduling: An algorithm for
software pipelining loops. In Proceedings of the 27th Annual
International Symposium on Microarchitecture, pages
63–74, Nov. 1994.

[17] B. R. Rau, C. D. Glaeser, and R. L. Picard. Efficient code
generation for horizontal architectures: Computer techniques
and architectural support. In Proceedings of the 9th Annual
International Symposium on Computer Architecture, pages
131–139, 1982.

[18] B. R. Rau, P. J. Kuekes, and C. D. Glaeser. A Statically
Scheduled VLSI Interconnect for Parallel Processors.
Computer Science Press, 1981.

[19] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker.
Register allocation for software pipelined loops. In
Proceedings of the ACM SIGPLAN’92 Conference on
Programming Language Design and Implementation, pages
283–299, June 1992.

[20] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai. Code
Generation Schema for Modulo Scheduled Loops. In
Proceedings of the 25th Annual International Symposium on
Michorarchitecture, pages 158–169, December 1992.

[21] S. Shim and S. Moon. Split-path enhanced pipeline
scheduling. IEEE Transactions on Parallel and Distributed
Systems, 14(5):447–462, May 2003.

[22] M. Smelyanskiy. Hardware/Software Mechanism for
Increasing Resource Utilization on VLIW/EPIC Processors.
Ph.D. Dissertation, Department of Electrical Engineering
and Computer Science, University of Michigan, 2004.

[23] M. Smelyanskiy, S. Mahlke, E. Davidson, and H. Lee.
Predicate-Aware Scheduling: A Technique for Reducing
Resource Constraints . In Proceedings of the Annual
IEEE/ACM International Symposium on Code Generation
and Optimization, pages 169– 178, March 2003.

[24] M. Stoodley and C.G.Lee. Software pipelining loops with
conditional branches. In Proceedings of the 29th Annual
International Symposium on Microarchitecture, pages
262–273, Dec. 1996.

[25] The Trimaran System. www.trimaran.org, 1999.
[26] R. Towle. Control and Data Dependence for Program

Transformations. PhD Dissertation, The University of
Illinois, 1976.

[27] N. Warter, G. Haab, K. Subramanian, and J. Bockhaus.
Enhanced modulo scheduling for loops with conditional
branches. In Proceedings of the 25th Annual International
Symposium on Microarchitecture, pages 170–179, 1992.

[28] N. Warter and N. Partamian. Modulo scheduling with
multiple initiation intervals. In Proceedings of the 28th
Annual International Symposium on Microarchitecture,
pages 111–118, 1995.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

