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Abstract

Traditionally, software pipelining is applied either to the
innermost loop of a given loop nest or from the innermost
loop to outer loops. In this paper, we propose a three-
step approach, called Single-dimension Software Pipelin-
ing (SSP), to software pipeline a loop nest at an arbitrary
loop level.

The first step identifies the most profitable loop level for
software pipelining in terms of initiation rate or data reuse
potential. The second step simplifies the multi-dimensional
data-dependence graph (DDG) into a �-dimensional DDG
and constructs a �-dimensional schedule for the selected
loop level. The third step derives a simple mapping function
which specifies the schedule time for the operations of the
multi-dimensional loop, based on the �-dimensional sched-
ule. We prove that the SSP method is correct and at least as
efficient as other modulo scheduling methods.

We establish the feasibility and correctness of our ap-
proach by implementing it on the IA-64 architecture. Exper-
imental results on a small number of loops show significant
performance improvements over existing modulo schedul-
ing methods that software pipeline a loop nest from the in-
nermost loop.

1. Introduction

Loop nests are rich in coarse-grain and fine-grain par-
allelism and substantial progress has been made in ex-
ploiting the former [7, 10, 11, 13, 18, 6]. With the ad-
vent of ILP (Instruction-Level Parallelism) processors like
VLIW, superscalar, and EPIC [1], and the fast growth in
hardware resources, another important challenge is to ex-
ploit fine-grain parallelism in the multi-dimensional itera-
tion space [14, 23, 20].

Software pipelining [1, 2, 14, 16, 17, 20, 23, 24, 25, 30]
is an effective way to extract ILP from loops. While numer-
ous algorithms have been proposed for single loops or the
innermost loops of loop nests [1, 3, 16, 17, 19, 24, 25], only
a few address software pipelining of loop nests [17, 20, 30].
These methods share the essential idea of scheduling each
loop level successively, starting with the innermost one.

In hierarchical modulo scheduling [17], an inner loop
is first modulo scheduled and is considered as an atomic-
operation of its outer loop. The process is repeated until all
loop levels are scheduled, or available resources are used
up, or dependences disallow further parallelization. The in-
efficiency due to the filling and draining (prolog and epilog
parts) of the software pipelined schedule for the inner loops
is addressed in [20, 30].

In this paper, we refer to the above approach as mod-
ulo scheduling from the innermost loop, or innermost-loop-
centric modulo scheduling. The innermost-loop-centric ap-
proach naturally extends the single loop scheduling method
to the multi-dimensional domain, but has two major short-
comings: (1) it commits itself to the innermost loop first
without considering how much parallelism the other levels
have to offer. Software pipelining another loop level first
might result in higher parallelism. (2) It cannot exploit the
data reuse potential in the outer loops [8, 9]. Other software
pipelining approaches for loop nests [14, 23] do not con-
sider resource constraints.

Lastly, there have been other interesting work that com-
bine loop transformation (e.g., unimodular transformation,
etc.) with software pipelining [32, 8]. However, in these
methods, software pipelining is still limited to the innermost
loop of the transformed loop nest.

In this paper, we present a unique framework for
resource-constrained software pipelining for a class of loop
nests. Our approach can software pipeline a loop nest at
an arbitrary loop level. It extends the traditional innermost
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loop software pipelining scheme to allow software pipelin-
ing to be applied to the most “beneficial” level in a loop
nest in order to better exploit parallelism and data reuse po-
tential in the whole iteration space and match it to the
available machine resources.

The problem addressed in this paper is formu-
lated as follows: Given a loop nest composed of n
loops L�� L�� � � � � Ln, identify the most profitable loop
level Lx (� � x � n) and software pipeline it. Soft-
ware pipelining Lx means that the consecutive itera-
tions of Lx will be overlapped at run-time. The other loops
will not be software-pipelined. In this paper, we only dis-
cuss how to parallelize the selected loopLx. Its outer loops,
if any, remain intact in our approach and can be paral-
lelized later.

The above problem can be broken down into two sub-
problems: how to predict the benefits of software pipelining
a given loop level, and how to software pipeline the loop
nest at the chosen loop level.

Our solution consists of three steps:

1. Loop selection: This step searches for the most prof-
itable loop level in the loop nest. Here profitability can
be measured in terms of initiation rate, or data reuse
potential, or both.

2. Dependence simplification and 1-D schedule construc-
tion: The multi-dimensional DDG of the loop nest is
reduced to a 1-dimensional (1-D) DDG for the se-
lected loop. Based on the 1-D DDG and the resource
constraints, a modulo schedule, referred to as the 1-D
schedule, is constructed for the operations in the loop
nest. No matter how many inner loops the selected loop
level has, it is scheduled as if it were a single loop.

3. Final schedule computation: Based on the resulting 1-
D schedule, this step derives a simple mapping func-
tion which specifies the schedule time of operations of
the multi-dimensional loop.

Since the problem of multi-dimensional scheduling is re-
duced to 1-dimensional scheduling and mapping, we refer
to our approach as Single-dimension Software Pipelining
(SSP).

An equally important problem is how to generate com-
pact code for the constructed SSP schedule. The code gen-
eration problem involves issues related to register assign-
ment through software and hardware renaming (to handle
live range overlapping), controlling filling and draining of
the pipelines, and limiting the code size increase. Details
are published in [27].

Like many software-pipelining methods, we assume dy-
namic support for kernel 1-only code [28]. In the absence of

1 The kernel of the 1-D schedule.

such support, our method can still produce efficient code, al-
though with an increase in code size. We target ILP unipro-
cessors with support for predication [1, 5]. There is no
constraint on the function units. They may or may not be
pipelined. There is no constraint on the latencies of opera-
tions, either.

We have developed a stand-alone implementation of our
method for the IA-64 architecture. The resulting code is run
on an IA-64 Itanium machine and the actual execution time
is measured. Our initial experimental results on a few loops
reveal that the proposed approach achieves significant per-
formance benefits over existing methods. Furthermore, we
observe that the SSP approach is beneficial even in the pres-
ence of loop transformations, such as loop interchange, loop
tiling, and unroll-and-jam.

We remark that the experimental results presented here
are preliminary in nature, and are included here mainly to
give a feel for the potential benefits of our method. The pur-
pose of this paper is to introduce the SSP concept.

Our method shows several advantages:

� Global foresight: Instead of focusing only on the in-
nermost loop, every loop level is examined and the
most profitable one is chosen. Furthermore, any crite-
rion can be used to judge the “profitability” in this loop
selection step. This flexibility opens a new prospect
to combine software pipelining with any other op-
timal criterion beyond the ILP degree, which is of-
ten chosen as the main objective for software pipelin-
ing. In this paper, we consider not only parallelism,
but also cache effects, which have not been consid-
ered by most traditional software pipelining methods
[1, 3, 14, 16, 17, 19, 20, 23, 24, 25, 30].

� Simplicity: The method retains the simplicity of the
classical modulo scheduling of single loops. The
scheduling is based on a simplified 1-dimensional
DDG and is done only once, irrespectively of the
depth of the loop nest. This is another essential dif-
ference from previous approaches. Also the tradi-
tional modulo scheduling of single loops is subsumed
as a special case.

� Efficiency: Under identical conditions, our schedule
provably achieves the shortest computation time2 that
could be achieved by the traditional innermost-loop-
centric approach. Yet, since we search the entire loop
nest and choose the most profitable loop level, the ex-
ecution time may be even shorter. Besides, we con-
sider reuse vector space to achieve potentially higher

2 We differentiate between the terms “execution time” and “computa-
tion time” of a schedule. The latter refers to the estimated execution
time of the schedule, while the former refers to the actual execution
time measured by running the schedule on a real machine.
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exploitation of data locality, which, in turn, further re-
duces the actual execution time of the schedule.

The method presented here can be applied to both imper-
fect and perfect loop nests [26, 27, 29]. However, for sim-
plicity reasons, we restrict ourselves to perfect loop nests in
this paper.

This paper is organized as follows. Section 2 introduces
the basic concepts and briefly reviews modulo scheduling.
Then we motivate our study by a simple example in Sec-
tion 3. Section 4 discusses our method in detail. We prove
the correctness and the efficiency of our approach in Sec-
tion 5. Experimental results and performance comparison
with other methods are reported in Section 6. A discussion
on related work and concluding remarks are presented in
Sections 7 and 8.

2. Basic Concepts

An n-deep perfect loop nest is composed of loops
L�� L�� � � � � Ln, respectively, from the outermost to the in-
nermost level. Each loop Lx�� � x � n� has an index
variable ix and an index bound Nx � �. The index is nor-
malized to change from 0 to Nx � � with unit step. The
loop body is assumed to have no branches; branches, if any,
are converted to linear code by if-conversion [5].

The iteration space of the loop nest is a finite convex
polyhedron [31, 7]. A node in the iteration space is called
an iteration point, and is identified by the index vector
I � �i�� i�� � � � � in�. The instance of any operation o in this
iteration point is denoted by o�I�. An Lx iteration is one ex-
ecution of the Lx loop. Thus the Lx loop has a total of Nx

number of iterations. One such iteration is also an iteration
point if Lx is the innermost loop.

We use �o� � o�� �� d� to represent a data dependence
from operations o� to o� in the loop nest, where o� and o�
are called source and sink of the dependence, respectively;
� � � is the dependence latency; and d � hd�� d�� � � � � dni
is the distance vector,where d� is the distance at the outer-
most level, and dn the innermost.

The sign of a vector is that of its first non-zero element,
either positive or negative. If all elements are 0, the vector
is a null or zero vector.

Software pipelining [1, 2, 8, 14, 16, 17, 20, 24, 25, 30]
exposes instruction-level parallelism by overlapping suc-
cessive iterations of a loop. Modulo scheduling (MS) [16,
17, 24, 25] for single loops is an important and probably
the most commonly used approach of software pipelining.
A detailed introduction can be found in [4].

In modulo scheduling, instances of an operation from
successive iterations are scheduled with an Initiation Inter-
val (II) of T cycles.

The schedule length of a (modulo) schedule is defined
as the length or execution time of a single iteration. Let the

schedule length of each iteration be l cycles. Then each iter-
ation is composed of S � d l

T
e number of stages, with each

stage taking T cycles.
The schedule consists of three phases: filling the

pipeline, repetitively executing the kernel, and drain-
ing the pipeline.
Example: Fig.1a shows an example loop. Assume there are
two dependences �a � b� �� h�i� and �b � c� �� h�i�.
Fig.1b shows a modulo schedule for the loop with T � �,
and S � �.

(a) An example loop (b) Modulo schedule

Figure 1. Modulo scheduling of a single loop

3. Motivation and Overview

In this section, we motivate our method with the help of a
simple 2-deep perfect loop nest. Subsequently, we illustrate
our scheduling approach using the same example through-
out the paper.

3.1. A Motivating Example

Fig. 2 shows a perfect loop nest in C language3 and its
data dependence graph (DDG). To facilitate understanding
and without loss of generality, in this example, we assume
that each statement is an operation. In the DDG, each node
represents an operation and an edge represents a depen-
dence labeled with the distance vector.

The inner loop has no parallelism due to the dependence
cycle a�b�a at this level. Thus modulo scheduling of the
innermost loop cannot find any parallelism for this exam-
ple. Innermost-loop-centric software pipelining approach
exposes extra parallelism, based on the modulo schedule, by
overlapping the filling and draining of the pipelines between
successive outer loop iterations. Since modulo scheduling
cannot find any parallelism, there is no filling or draining
and therefore no overlapping. Thus, innermost-loop-centric
software pipelining cannot find any parallelism, either.

3 This loop nest certainly could be parallelized in a number of other
ways, too. We only use it for illustration purposes.
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L�:for (i�=0; i� � N�; i�++)f
L�: for (i�=0; i� � N�; i�++)f

a: U[i� � �][i�]=V[i�][i�]+
U[i�][i�];

b: V[i�][i� � �]=U[i� � �][i�];
g

g

Figure 2. A loop nest and its DDG

One may argue that a loop interchange transformation
before software pipelining will solve this problem. Unfor-
tunately, that will destroy the data reuse in the original
loop nest: for large arrays each iteration point will intro-
duce 3 cache misses for accessing U�i� � ���i��, V�i���i��,
and U�i���i��.

3.2. Overview and Illustration of Our Approach

The above example shows the limitation of the tradi-
tional software pipelining: It cannot see the whole loop nest
to better exploit parallelism. Nor can it exploit the data reuse
potentials of outer loops. This raises the question: Why
not select a better loop to software pipeline, not necessar-
ily the innermost one? This question brings the challeng-
ing problem of software pipelining of a loop nest. The chal-
lenge comes from two aspects: how to handle resource con-
straints? And how to handle the multi-dimensional depen-
dences?

3.2.1. Which Loop to Software Pipeline? Parallelism is
surely one of the main concerns. On the other hand, cache
effects are also important and govern the actual execution
time of the schedule. However, it is very hard to consider
cache effects in traditional software pipelining, mainly due
to the fact that it focuses on the innermost loop. Provided
that an arbitrary loop level in a loop nest can be software
pipelined, we can search for the most profitable level, mea-
sured by parallelism or cache effect, or both. Any other ob-
jective can also be used as a criterion.

3.2.2. How to Software Pipeline the Selected Loop?
Suppose we have chosen a loop level, for simplicity, say
L�. We allocate the iteration points to a series of slices, and
software pipeline each slice. Although any software pipelin-
ing method can be used, in this paper we focus on modulo
scheduling.

For any i� � ��� N��, iteration point �i�� �� � � � � �� ��
is allocated to the first slice, and the next point
�i�� �� � � � � �� ��, in the lexicographic order, to the sec-
ond slice, etc. If there were no dependences, and no
constraints on the resources, all L� iterations could be ex-
ecuted in parallel, while the iteration points within each

(a) Software pipelined slices

(b) The final schedule after cutting and pushing down the slices

Figure 3. Illustration

of them are executed sequentially. However, due to depen-
dences at the L� loop level, we may execute the iterations
of L� in an overlapped (software pipelined) manner. Fur-
thermore, due to the limited resources we may not exe-
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Figure 4. Rewritten loops

cute all points in a slice simultaneously. Therefore we cut
the slices into groups, with each group containing S it-
erations of L� loop. Then we push down (i.e. delay the
execution of) the next group until resources are avail-
able.
Example: We illustrate the above thoughts with the loop
nest example in Fig. 2. Let us assume operation a and b have
a latency of 1 and 2 cycles, respectively. Further assume that
we have two functional units, and both are pipelined and can
perform any of the operations. For any i�, point �i�� �� is al-
located to the first slice, and point �i�� �� to the second, etc.
Fig. 3(a) shows the allocation with N� � 	 and N� � �.
Here each slice is modulo scheduled so that successive iter-
ation points within this slice initiate at an interval of T � �
cycle 4. The schedule length l equals 3, and therefore there
are S � d l

T
e � d ��e � � stages.

Although the resource constraints are respected within
each modulo scheduled slice, resource conflicts (be-
tween slices) arise when successive slices are issued greed-
ily. To remove the conflicts, we cut the slices into groups,
with each group having S � � iterations of L� loop.
There are two groups in this schedule. Each group, ex-
cept the first one, is pushed down by �N�����S�T cycles
relative to its previous group. The delay is designed to en-
sure that repeating patterns definitely appear. This leads
to the final schedule that maps each instance of an op-
eration to its schedule time, as shown in Fig. 3(b). Note
that not only dependence and resource constraints are re-
spected, but the parallelism degree exploited in a modulo
scheduled slice (S � �) is still preserved, and the resources
are fully used. Lastly, it is straightforward to rewrite the fi-
nal schedule in a more compact form (Fig. 4).

How to Handle Resources?
Resource constraints are enforced at two levels: at the

4 Although the example in Fig. 3(a) is very simple, the principles apply
to general cases as well. In general, a slice can simply be any possible
modulo schedule.

slice level when we modulo schedule the slices and at
the inter-slice level when we push down slices appropri-
ately.

How to Handle Dependences?

A major obstacle to software pipelining of loop nests is
how to handle n-dimensional distance vectors. The above
approach, however, easily solves this problem. A key ob-
servation is that if a dependence is respected before push-
ing down the groups, it will be also respected after that be-
cause pushing down can only increase the time distance be-
tween the source and sink operations of the dependence.
Therefore we only need to consider the dependences neces-
sary to obtain the schedule before the push down.

There are two kinds of legal dependences: one is across
two slices, and the other one is within a slice, as shown in
Fig.5, where each parallelogram represents a slice, and each
dot an iteration point. Although not shown on the picture,
each slice is software pipelined.

Figure 5. Dependences

Due to the way the iteration points are allocated,
a dependence across two slices has a distance vec-
tor hd�� d�� � � � � dni, where d� � �, and hd�� � � � � dni is a
positive vector. Such a dependence is naturally resolved be-
cause the two slices are executed sequentially.

A dependence within a slice has a distance vec-
tor hd�� d�� � � �, dni, where d� � �, and hd�� � � � � dni is a
zero vector. Such a dependence has to be considered dur-
ing software pipelining.

The two kinds of dependences are named positive and
zero dependences, respectively. Note that a dependence
from a slice to a previous slice is illegal. It is called a neg-
ative dependence. Negative dependences can be changed to
be zero or positive dependences using loop skewing, as will
be explained in Section 4.

In summary, we only need to consider zero dependences
to construct the software-pipelined schedule.
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4. Solution

In this section, we first classify dependences, and then
formalize our approach into 3 steps: (1) loop selection,
(2) dependence simplification and 1-D schedule construc-
tion, and (3) final schedule computation.

Let d � hd�� d�� � � � � dni be the distance vector of a de-
pendence. We say that this dependence is effective at loop
level Lx�� � x � n� iff hd�� d�� � � � � dx��i � 0 and
hdx� dx��� � � � � dni � 0, where 0 is the null vector with ap-
propriate length. By effective, we mean that such a depen-
dence must be considered when we software pipeline Lx.
All effective dependences at Lx compose the effective DDG
at Lx.

According to the definition, if a dependence is effective
at Lx, we have hdx� dx��� � � � � dni � 0 (And of course the
first element dx � �). We classify the dependence by the
sign of the sub-distance-vector hdx��� � � � � dni, when x �
n. If this sub-vector is a zero, positive, or negative vector,
the dependence is classified as a zero, positive, or negative
dependence at Lx, respectively. When x � n, we classify
it as a zero dependence at Lx for uniformity.
Example: Fig.5 illustrates a positive dependence at L� with
a distance vector h�� �� � � � � �� �i, and a zero dependence at
L� with a distance vector h�� �� � � � � �� �i.

We must point out that the above classification is com-
plete: an effective dependence is in and only in one of the
three classes. Especially, the dependences are classified ac-
cording to the sign of the sub-distance-vector, not that of
the whole distance vector. For example, a dependence in a
3-deep loop nest with a distance vector of h����� 
i is a
negative dependence at L� because the sub-vector h��� 
i
is negative, even though the whole distance vector is posi-
tive.

We classify only effective dependences since in the fol-
lowing sections, our discussion relates only to them. Al-
though the dependence classification is dependent on the
loop level, we will not mention the loop level when the con-
text is clear.

As explained in Section 3.2.2, we assume that when we
consider to software pipeline a loop level Lx, all effective
dependences at this level are either zero or positive. Nega-
tive dependences cannot be handled directly. The loop nest
must be transformed to make them zero or positive5.

5 It is always feasible to transform a negative dependence to a zero or
positive dependence by loop skewing. However, after that, the itera-
tion space becomes non-rectangular. Although we restrict to rectangu-
lar iteration spaces in this paper, the first two steps of SSP are still ap-
plicable to non-rectangular cases, without any change, since schedul-
ing considers only DDG and hardware resources. It considers noth-
ing about the shape of the iteration space. For the third step of SSP, in
our SSP code generator for the IA-64 architecture in our experiments,
we used predicate registers to dynamically form a non-rectangular it-
eration space in runtime, although the static code produced looks rect-
angular. The algorithms are neither presented here nor in the compan-

Moreover, only zero dependences need to be considered.
Positive dependences can be ignored as they will be natu-
rally honored in the final schedule. Lastly, only the depen-
dence distance at Lx is useful for software pipelining. Thus
we can reduce the effective DDG to have only zero depen-
dences with 1-dimensional distance vectors. We refer to the
resulting DDG as the simplified DDG. The definition is as
follows: The simplified DDG at Lx is composed of all the
zero dependences at Lx; the dependence arcs are annotated
with the dependence distance at Lx.
Example: Fig.6(a) shows the effective DDG at L� for the
loop nest depicted in Fig.2. There are two zero dependences
in this DDG: a � a and a � b. Associating the depen-
dence distances at L� with the arcs, we get the simplified
DDG shown in Fig.6(b).

(a) Effective DDG
at L�

(b) Simpli-
fied DDG at
L�

Figure 6. Dependence Simplification

4.1. Loop Selection

In this paper, our objective is to generate the most effi-
cient software-pipelined schedule possible for a loop nest.
Thus it is desirable to select the loop level with a higher ini-
tiation rate (higher parallelism), or a better data reuse po-
tential (better cache effect), or both6. In this section, we ad-
dress the essential problem of evaluating these two criteria.

4.1.1. Initiation Rate Initiation rate, which is the inverse
of initiation interval, specifies the number of iteration points
issued per cycle. Hence we choose the loop level Lx that
has the maximum initiation rate, or minimum initiation in-
terval.

The initiation interval TLx at loop level Lx can be esti-
mated as:

TLx � max�RecMIILx � ResMII�� (1)

ion paper [27] due to the space limitation.
6 The specific decision is not made here, since that is implementation-

dependent.
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where RecMIILx and ResMII are the minimum initiation in-
tervals determined, respectively, by recurrences in the sim-
plified DDG atLx, and by the available hardware resources.

RecMIILx � max
�C

��C�

d�C�
� (2)

where C is a cycle in the simplified DDG, �(C� is the sum
of the dependence latencies along cycle C, and d�C� is the
sum of the dependence distances along C 7.

For pipelined function units [4, 15],

ResMII � max
� resource type r

total operations that use r
total resources of type r

(3)
We omit the details of the ResMII calculation for non-
pipelined function units. Readers are referred to [15].

In addition to the initiation rate, we also look at the trip
count of each loop level. In particular, the trip count should
not be less than S, the number of stages in the schedule.
Otherwise, this loop should not be chosen.

The reason is that the slices are cut in groups, where each
group has S iterations of Lx loop. Then the trip count Nx

is expected to be divisible by S. Otherwise, the last group
will have fewer Lx iterations, resulting in a lower utiliza-
tion of resources in that group. However, when Nx � S, it
is always possible to apply loop peeling to avoid the situa-
tion.

Although S is unknown at loop selection time, it is gen-
erally small because the limited resources in a uniproces-
sor cannot support too many stages at the same time. As a
guideline, a small estimated value can be set for S.

4.1.2. Data Reuse When we software pipeline a loop
level, the data reuse potential can be measured by the av-
erage number of memory accesses per iteration point. The
fewer the accesses, the greater the reuse potential. Without
loss of generality, let us consider loop L�.

In our approach, software pipelining results in S itera-
tions of L� loop running in a group, which is composed
of a series of slices. Select the first S number of suc-
cessive slices in the first group. They include the follow-
ing set of iteration points: f�i�� �� � � � � �� in�j�i� and in �
��� S�g, which is an S � S square in the iteration space.
This is a typical situation in our method, because L� it-
erations are executed in parallel, and the index of the in-
nermost loop changes more frequently than the other in-
dexes. Therefore we could estimate the memory accesses
of the whole loop nest by those of the iteration points in this

7 The reader will find in section 4.2.2 that our scheduling method has
extra Sequential Constraints added to modulo scheduling. They af-
fect only schedule length in the 1-D schedule, but not the initiation in-
terval (In the worst case, we can always increase schedule length to
satisfy these constraints). Thus they will not affect the RecMII or
ResMII values.

set. This set can be abstracted as a localized vector space
� � spanf��� �� � � � � ��� ��� � � � � �� ��g. Now the problem is
very similar to that discussed in Wolf and Lam [31]. Be-
low we briefly describe the application of their method in
this situation.

For a uniformly generated set in this localized space, let
RST and RSS be the self-temporal and self-spatial reuse
vector space, respectively. And let gT and gS be the number
of group temporal and group-spatial equivalent classes 8.
Then for this uniformly generated set, the number of mem-
ory accesses per iteration point is [31]:

gS � �gT � gS��l

leSdim�RSS���
� (4)

where l is the cache line size, and

e �

�
� if RST 	 � � RSS 	 ��
� otherwise�

The total memory accesses per iteration point are the
sum of accesses for each uniformly generated set.

4.2. Dependence Simplification and 1-D Schedule
Construction

Our method software pipelines only the selected loop
level. Enclosing outer loops, if any, are left as they are.
Therefore, without loss of generality, we consider L� as
the selected level. We simplify dependences to be single-
dimensional first, then schedule operations.

4.2.1. Dependence Simplification As mentioned already,
given the effective DDG at L�, we can simplify the depen-
dences to obtain a simplified DDG, which consists of only
zero dependences with 1-dimensional distance vectors. To
make sure positive dependences are respected, during this
simplification process, we also compute �max�o� for each
operation o, where:

�max�o� � max
� positive dependence �o�o����d�

�� (5)

The value of �max�o� is equal to 0 if there is no posi-
tive dependence with o as the source operation. The value
will be used for scheduling operations so that positive de-
pendences will be naturally honored in the final schedule.
Example: For the loop nest in Fig.2, its effective and sim-
plified DDG at L� are shown in Fig.6(a) and Fig.6(b).
�max�a� � � because a is not the source of any positive
dependence, and �max�b� � 
 because of the positive de-
pendence b� a with a 2-cycle latency.

8 These symbols are consistent with those in [31], and their values can
be computed by using the method in [31].
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4.2.2. 1-D Schedule Construction Based solely on the
simplified DDG and the hardware resource constraints, we
construct a 1-D schedule. Since the DDG is 1-dimensional,
from the viewpoint of scheduling, L� is treated as a sin-
gle loop as if it had no inner loops. Any modulo schedul-
ing method can be applied to schedule L� to obtain a 1-D
schedule.

Let T be the initiation interval of the generated schedule,
and S be the number of stages of the schedule. We refer to
the schedule as a 1-D schedule for the loop level L�. Let the
schedule time for any operation instance o�i�� be ��o� i��9.
The 1-D schedule must satisfy the following properties:

1. Modulo property:

��o� i�� � T � ��o� i� � �� (6)

2. Dependence constraints:

��o�� i�� � � � ��o�� i� � k� (7)

for every dependence arc �o� � o�� �� hki� in the sim-
plified DDG.

3. Resource constraints: During the same cycle, no hard-
ware resource is allocated to more than one operation.

4. Sequential Constraints:

S�T���o� �� � �max�o� for any operation o if n � ��
(8)

The first three constraints are exactly the same as those of
the classical modulo scheduling [4, 15]. We have added the
sequential constraints to enforce sequential order between
successive iteration points in the same L� iteration. This en-
sures that all positive dependences are honored at runtime.
Example:. Fig.7 shows the 1-D schedule constructed for
the example loop nest in Fig.2. The 1-D schedule is based
on the simplified DDG in Fig.6(b). As mentioned earlier,
we have assumed two homogeneous functional units, and
an execution latency of 1 and 2 cycles for operations a and
b. The schedule has an initiation interval of 1 cycle (T � �)
and has 3 stages (S � �). Also, ��a� i�� � � � i� � T and
��b� i�� � � � i� � T .

4.3. Final Schedule Computation

As explained in Section 3.2.2, we first allocate iteration
points in the loop nest to slices: for any i� � ��� N��, it-
eration point �i�� �� � � � � �� �� is allocated to the first slice,
�i�� �� � � � � �� �� to the second slice, and so on. Then we soft-
ware pipeline each slice by applying the 1-D schedule to it.

If the successive slices are greedily issued without con-
sidering resource constraints across the slices (That is, two

9 � � ��o� i�� � S � T , when i� � �.

Figure 7. The 1-D schedule

adjacent slices are put together without any “hole”between
them. This can be done because the slices have the same
shape), then we obtain the schedule like that in Fig.3(a).
However, note that, within each slice, the resource con-
straints are honored during the construction of the 1-D
schedule. Now, to enforce resource constraints across slices,
we cut the slices in groups, with each group having S num-
ber of L� iterations. Each group, except the first one, is de-
layed by a given number of cycles as shown in Fig.3(b).

Using the above procedure, a final schedule can be con-
structed for the loop nest. Such a schedule can be precisely
defined by the following mapping function. For any oper-
ation o and iteration point I=(i�� i�,. . . , in�, schedule time
f�o� I� is given by

f�o� I� � ��o� i�� �
X

��x�n

�ix � �
Y

x�y�n��

Ny� � S � T � �

�
i�
S

�
� ��

Y
��x�n��

Nx�� �� � S � T� (9)

where Nn��=1.
Let us briefly explain how the above equation is derived.

First, let us consider the greedy schedule before cutting and
pushing down the groups. For this schedule, the schedule
time of o�I� is equal to that of o�i�� �� � � � � �� plus the time
elapsed between the schedule times of o�i�� �� � � � � �� and
o�I�. Since o�i�� �� � � � � �� is in the first slice, the sched-
ule time of o�i�� �� � � � � �� is simply equal to ��o� i��, the
mapping function of the 1-D schedule. Note that this cor-
responds to the first term of the right-hand side (RHS) of
Equation (9).

Next, between iterations o�i�, 0,. . . , 0) and
o�i�� i�� � � �� in�, there are i�*(N�*N�*..*Nn� �
i�*(N�*N�*..*Nn�+. . . +in number of iteration points.
These points execute sequentially and each of them takes
S*T cycles. Thus, the time elapsed between the sched-
ule times of o�i�� �� � � � � �� and o�i�� i�� � � �� in� is equal
to X

��x�n

�ix � �
Y

x�y�n��

Ny� � S � T �� (10)

Note that this corresponds to the second term of the RHS of
Equation (9).

Next we discuss the effect of grouping and pushing down
the slices. Iteration point o�I� is located in group

�
i�
S

�
. Each
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group in a slice is delayed by
�
i�
S

�
� w cycles, where w

is the delay between two successive groups. For the ex-
ample in Fig.3(b) with the 2-deep loop nest, we see that
w � �N� � �� � S � T . In general, for an n-deep loop nest,
w � �total iteration points in an L� iteration � �� � S � T .
Therefore the group where o�I� is located is pushed down
by

�
i�
S

�
� ��

Y
��x�n��

Nx�� �� � S � T (11)

cycles. This is precisely the third term in Equation (9).
Example. To illustrate the mapping function for the final
schedule, consider the 2-deep loop nest in Fig.2. From the
1-D schedule in Fig.7, we know that S � �, T � �, and
��a� i�� � � � i� � T . For any operation instance a�i�� i��,
we have the final schedule

f�a� �i�� i��� � i� � i� � � �

�
i�
�

�
� �N� � �� � ��

For instance, when N� � �, we have f�a� ��� ��� � ��, as
shown in Fig.3(b).

5. Analysis

In this section, we establish the correctness and effi-
ciency of the SSP approach, and its relationship with MS.

5.1. Correctness and Efficiency

Theorem 1 The final schedule defined in Equation (9) re-
spects all the dependences in the effective DDG and the re-
source constraints.

Section 3.2.2 has described the intuition of the above the-
orem. The complete proof is documented in [29].

Next, we demonstrate the efficiency of the SSP ap-
proach over other innermost-loop-centric software pipelin-
ing methods from the viewpoint of computation time of
the constructed schedule. In particular, we compare our ap-
proach with modulo scheduling of the innermost loop (MS),
and modulo scheduling of the innermost loop and overlap-
ping the filling and draining parts of the outer loops, re-
ferred to as extended modulo scheduling (xMS) in this pa-
per [20] . Let us define the computation time as the schedule
time of the last operation instance+1.

Theorem 2 For an n-deep loop nest, suppose that MS,
xMS, and SSP, find the same initiation interval T and stage
number S. Furthermore, suppose that the SSP method
chooses the outermost loop L�, which has a trip count N�.
If N� is divisible by S, then the computation time of the fi-
nal schedule of SSP is no bigger than that of the MS or xMS
schedule.

The complete proof is also documented in [29]. Intu-
itively, this theorem holds because the final schedule pro-
duced by SSP always issues one iteration points every T
cycles, without any hole, as can be seen from the example
in Fig 3(b).

The above theorem assumes that N� is divisible by S.
If not, since N� � S (according to the discussion in Sec-
tion 4.1.1) and S is typically very small, we can always peel
off some L� iterations to make it divisible. In this way, we
can assure at least the same performance as that of MS or
xMS.

Since we search globally for the loop with the small-
est initiation interval T , which dominates the computation
time of a (final) schedule [29], our computation time can
be even better. Furthermore, since we use an accurate esti-
mation model for data reuse to exploit data locality, the ex-
ecution time of our schedule will be lower than that of the
schedules generated by MS or xMS methods.

5.2. Relation with the Classical Modulo Schedul-
ing of a Single Loop

If the loop nest is a single loop (n=1), our sequential con-
straints in the formula (8) are redundant. Other constraints
are exactly the same as the those of the classical modulo
scheduling. And the final schedule is f�o� �i��� � ��o� i��.
In this sense, classical MS is subsumed as a special case of
our method.

The time complexity of SSP method is similar to MS.
It is bounded by O�u�� or O�u��, where u is the number
of operations [29]. The specific complexity depends on the
loop selection criteria and modulo scheduling being used,
and usually is limited to O�u��. O�u�� is an extreme case
that happens when n (the number of loops) is close to u,
which does not happen frequently in real world.

6. Experiments

We briefly introduce and analyze our experiments con-
ducted on the IA-64 architecture. Detailed performance
curves and cache misses, and their analysis are reported in
the technical memo [29].

6.1. Experimental Setup

Our experimental platform is an IA-64 Itanium worksta-
tion with a 733MHZ processor, 2GB main memory, and
16KB/96KB/2MB L1/L2/L3 caches. The method was im-
plemented as a stand-alone module. Our implementation
addresses a number of implementation difficulties, includ-
ing compile-time register renaming, filling/draining con-
trol, predicated code generation, rotating registers usage,
and code size reduction. Interested reader is referred to our
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companion paper [27] for details. The compilation time was
negligible.

Huff’s modulo scheduling method [16] was used to im-
plement the 1-D scheduler. Using the generated schedule,
the code generator produces two versions of the same pro-
gram: one is performance-optimized, and the other is code-
size optimized [27]. We refer to them as SSP and CS-SSP,
respectively.

For comparisons, we chose important loop kernels from
scientific applications: matrix multiply (MM), LU decom-
position (LU), SOR relaxation (SOR), and modified 2-D hy-
drodynamics (HD) from the Livermore loops [21]. We com-
pare the performance of the SSP method against modulo-
scheduling method [16] and an optimized version of it
where the prolog and epilog of consecutive iterations over-
lap [20]. We refer to them as MS and xMS respectively. We
also applied three loop transformations to test each method
in a different context for MM: loop interchange (6 differ-
ent versions), loop tiling and unroll-and-jam.

To compare and analyze performance, we measured the
actual execution time of the schedules from each method on
the Itanium machine, and also measured the cache misses
using the IA64 performance monitoring tool, Pfmon.

6.2. Performance Analysis

In all our experiments the SSP method always outper-
forms MS and xMS, even when loop interchange, loop
tiling or unroll-and-jam is applied beforehand. Being able
to choose a more profitable loop level clearly proved itself
to be an advantage over MS and xMS.

Loop selection is important to exploit maximal paral-
lelism. For MM-jik, MM-ijk and SOR, a recurrence cycle
in the innermost loop prevents a better overlapping of itera-
tions. However, by software-pipelining the outermost loop,
SSP and CS-SSP achieves a higher speedup, e.g., 1.5 times
faster than MS and xMS schedules on average for MM-ijk.

Loop selection is also important to reduce mem-
ory accesses and improve the real performance of soft-
ware pipelined schedules. For MM-ikj, MM-jki, MM-kij,
MM-kji,HD, and LU, the cache misses measurement
shows that SSP schedules result in lower L2 cache misses,
and lower or the same L3 cache misses, although there is no
much difference in the parallelism exploited in each sched-
ule. SSP was then able to get around limited data reuse op-
portunities of the innermost loop. As a consequence, the
real performance of SSP and CS-SSP schedules are higher,
e.g., 1 time faster than MS and xMS schedules on aver-
age for MM-ikj.

In low-level details, the advantage of SSP scheduling and
code generation shows clearly in these tiled and register-
tiled MM. Although the loops tested are perfect in high-
level language, they become imperfect at low level. After

Method MS xMS SSP CS-SSP

MM-ijk 1.0 1.0 2.5 2.6
MM-jik 1.0 1.0 3.9 4.0
MM-ikj 2.5 2.7 5.4 5.5
MM-jki 2.5 2.5 5.2 5.3
MM-kij 2.5 2.5 3.0 3.0
MM-kji 2.0 2.3 3.3 3.3

HD 1.6 1.6 2.0 2.0
SOR 1.2 1.2 2.5 2.5
LU 2.4 2.4 2.8 3.0

MM-jki with
loop tiling 7.7 8.5 10.4 10.7

MM-jki with
unroll-and-jam 11.6 11.9 14.4 12.7

Table 1. Average speedups

tiling or register-tiling, the depth of the whole loop nest be-
comes deeper (from 3 to 5). And thus it becomes more im-
portant to offset the overhead of running the operations out-
side the innermost loop. In the tiled or register tiled loop,
these operations are more frequently executed, since the in-
ner loops have small trip counts. Thus effective scheduling
of these operations are very important. Although not intro-
duced in this paper, SSP considers scheduling these opera-
tions at the very beginning of building the 1-D DDG. The
result is a compact schedule, with all hardware resources
fully exploited. In comparison, xMS and MS mainly care
about the efficiency of running the innermost loop opera-
tions and their software pipelined kernel includes only such
operations. Other operations are inserted or executed as nor-
mal in the schedule, depending on the resources, depen-
dences, and the validity concerns. Our experiments indi-
cates that the bundle densities of SSP and CS-SSP are more
than 10% higher than that of xMS [27]. This, in turn, leads
to around 20% performance improvement.

7. Related Work

Most software pipelining algorithms [1, 3, 4, 16, 24, 25]
focus on the innermost loop, and do not consider cache ef-
fects. The most commonly used method, modulo schedul-
ing [1, 4, 16, 24], is a special case of our method.

A common extension of modulo scheduling from single
loops to loop nests, including hierarchical reduction [17],
OLP [20], and pipelining-dovetailing [30], is to apply mod-
ulo scheduling hierarchically in order to exploit the paral-
lelism between the draining and filling phases. The modulo
reservation table and dependence graph need to be recon-
structed before scheduling each level. In comparison, our
method considers cache effects and performs scheduling
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only once, independent of the depth of the loop nest. The
draining and filling phases are naturally overlapped with-
out any special treatment.

Next we address the question: What is the difference be-
tween our method and the one that interchanges the selected
loop with the innermost loop, and then software pipelines
the new innermost loop with MS? First, it may not always
be possible to interchange the two loops. For example, if
a dependence in a 3-deep loop nest has a distance vector
of h�� ����i and our method selects the outermost loop,
it is not legal to interchange this loop with the innermost
loop. Second, even if they are interchangeable, the result-
ing schedules have different runtime behavior due to dif-
ferent data reuse patterns. And for this interchanged loop
nest, the best choice still has to be made by global search-
ing. This is best explained by our experiments on matrix
multiply ijk-order and, after interchange, the kji-order. MS
does improve performance after interchange. However, our
method performs even better. Third, in some situations, in-
terchange may be a bad choice, as we discussed in Sec-
tion 3.1. Lastly, loop interchange can be beneficial to SSP as
well, as can be seen from the experiments on different ver-
sions of MM.

Loop Tiling [31] aims to maximize cache locality, in-
stead of parallelism. Loop unrolling [6] duplicates the loop
body of the innermost loop to increase instruction-level par-
allelism. Both methods are complementary to SSP.

Unroll-and-jam [9, 6] has been applied to improve the
performance of software pipelined loops [8]. The outer
loop is unrolled and but it is still the innermost loop that
is software-pipelined. In other words, the RecMII still
strongly depends on the recurrences in the innermost loop,
though reduced by the unroll factor. On the other hand, the
RecMII of an SSP schedule depends on the recurrences
in the chosen loop level. Thus, by choosing an appropri-
ate loop level in the loop nest, the SSP method can achieve
a lower initiation interval that might not be attainable via
unroll-and-jam followed by MS.

Unroll-and-squash first applies unroll-and-jam to a
nested loop, and then “squash” the jammed innermost
loop to generate software pipelined code [22]. SSP is dif-
ferent from unroll-and-squash in the following ways:
(1) the unroll-and-squash method presented in [22] ap-
pears to be limited to 2-deep loop nest; (2) it does not
overlap the epilog and prolog and requires optimiza-
tions such as xMS to achieve this; and (3) it decides on
the unroll factor first, and then software pipelines the in-
nermost loop. An in-depth comparison of SSP with
unroll-and-jam and unroll-and-squash is left for fu-
ture work.

Hyperplane scheduling [18] is generally used in the con-
text of large array-like hardware structures (such as systolic
arrays and SIMD arrays), and does not consider resource

constraints. There has been an interesting approach recently
that enforces resource constraints to hyperplane scheduling
by projecting the n-D iteration space to an �n � ��-D vir-
tual processor array, and then partitioning the virtual proces-
sors among the given set of physical processors [12]. This
method targets parallel processor arrays, and does not con-
sider low-level resources (like the function units within a
single processor) or cache effects. A subsequent software
pipelining phase may need to be applied to each physical
processor in order to further exploit instruction-level paral-
lelism from the iterations allocated to the same processor.

Other hyperplane-based methods [10, 11, 23, 14] for-
mulate the scheduling of loop nests as linear (often integer
linear) programming problems. Optimal solutions to inte-
ger programming have exponential time complexity in the
worst case when using the Simplex algorithm or branch-
and-bound methods [7]. Furthermore, they consider neither
resource constraints nor cache effects.

Unimodular and non-unimodular transformations [7,
13] mainly care for coarse-grain parallelism or the commu-
nication cost between processors.

Fine-grain wavefront transformation [2] combines
loop quantization and perfect pipelining [3] to ex-
plore coarse and fine-grain parallelism simultaneously. It is
based on outer loop unrolling and repetitive pattern recog-
nition. There are two difficult problems involved here,
namely, determining the optimal unrolling degree and iden-
tifying functional equivalent nodes [3].

8. Conclusion

We have introduced a unique 3-step approach to software
pipeline a loop nest at an arbitrary level. This approach re-
duces the challenging problem of n-dimensional software
pipelining into a simpler problem of 1-dimensional software
pipelining. Our method, referred to as Single-dimension
Software Pipelining (SSP), provides the freedom to search
for and schedule the most profitable level, where profitabil-
ity can be measured in terms of parallelism exploited, data
reuse potential, or any other criteria.

We demonstrated the correctness and efficiency of our
method. The schedule generated by our method was shown
to naturally achieve the shortest execution time compared
to traditional innermost-loop-centric modulo schedul-
ing methods due to better data reuse, instruction- and
loop-level parallelism, and/or code generation.

Future work includes the study of different aspects of
SSP such as register allocation, interaction with other loop
nest transformations, and affordable hardware support for
kernel-only code generation.
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[19] S.-M. Moon and K. Ebcioğlu. Parallelizing nonnumeri-
cal code with selective scheduling and software pipelining.
ACM Transactions on Programming Languages and Sys-
tems, 19(6):853–898, Nov. 1997.

[20] K. Muthukumar and G. Doshi. Software pipelining of nested
loops. Lecture Notes in Computer Science, 2027:165–??,
2001.

[21] T. Peters. Livermore loops coded in c.
http://www.netlib.org/benchmark/livermorec.

[22] D. Petkov, R. Harr, and S. Amarasinghe. Efficient pipelin-
ing of nested loops: unroll-and-squash. In 16th Intl. Paral-
lel and Distributed Processing Symposium (IPDPS ’02), Fort
Lauderdale, FL, Apr. 2002. IEEE.

[23] J. Ramanujam. Optimal software pipelining of nested loops.
In Proc. of the 8th Intl. Parallel Processing Symp., pages
335–342, Cancún, Mexico, April 1994. IEEE.

[24] B. R. Rau. Iterative modulo scheduling: An algorithm for
software pipelining loops. In Proceedings of the 27th Annual
International Symposium on Microarchitecture, pages 63–
74, San Jose, California, November 30–December2, 1994.

[25] B. R. Rau and J. A. Fisher. Instruction-level parallel pro-
cessing: History, overview and perspective. Journal of Su-
percomputing, 7:9–50, May 1993.

[26] H. Rong. Software Pipelining of Nested Loops. PhD thesis,
Tsinghua University, Beijing, China, 2001.

[27] H. Rong, A. Douillet, R. Govindarajan, and G. R. Gao.
Code generation for single-dimension software pipelining of
multi-dimensional loops. In Proc. of the 2004 Intl. Symp. on
Code Generation and Optimization (CGO), March 2004.

[28] H. Rong and Z. Tang. Hardware controlled shifts and ro-
tations supporting software pipelining of loop nests. China
Patent, November 2000. #00133535.9.

[29] H. Rong, Z. Tang, A. Douillet, R. Govindarajan, and G. R.
Gao. Single-dimension software pipelining for multi-
dimensional loops. CAPSL Technical Memo 49, Depart-
ment of Electrical and Computer Engineering, University
of Delaware, Newark, Delaware, September 2003. In
ftp://ftp.capsl.udel.edu/pub/doc/memos/memo049.ps.gz.

[30] J. Wang and G. R. Gao. Pipelining-dovetailing: A transfor-
mation to enhance software pipelining for nested loops. In
Proc. of the 6th Intl. Conf. on Compiler Construction, CC
’96, volume 1060 of Lecture Notes in Computer Science,
pages 1–17, Linkoping, Sweden, April 1996.

[31] M. E. Wolf and M. S. Lam. A data locality optimizing algo-
rithm. In Proc. of the ACM SIGPLAN ’91 Conf. on Prog.
Lang. Design and Implementation, pages 30–44, Toronto,
June 26–28, 1991. SIGPLAN Notices, 26(6), June 1991.

[32] M. E. Wolf, D. E. Maydan, and D.-K. Chen. Combining loop
transformations considering caches and scheduling. In Proc.
of the 29th Annual Intl. Symp. on Microarchitecture (MICRO
29), pages 274–286, Paris, December 2–4, 1996.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 


