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Abstract  

Instruction scheduling hardware can be simplified 
and easily pipelined if pairs of dependent instructions 
are fused so they share a single instruction scheduling 
slot.  We study an implementation of the x86 ISA that 
dynamically translates x86 code to an underlying ISA 
that supports instruction fusing. A microarchitecture 
that is co-designed with the fused instruction set com-
pletes the implementation.  

In this paper, we focus on the dynamic binary 
translator for such a co-designed x86 virtual machine. 
The dynamic binary translator first cracks x86 instruc-
tions belonging to hot superblocks into RISC-style 
micro-operations, and then uses heuristics to fuse to-
gether pairs of dependent micro-operations. 
Experimental results with SPEC2000 integer bench-
marks demonstrate that: (1) the fused ISA with dynamic 
binary translation reduces the number of scheduling 
decisions by about 30% versus a conventional 
implementation that uses hardware cracking into RISC 
micro-operations; (2) an instruction scheduling slot 
needs only hold two source register fields even though 
it may hold two instructions; (3) translations generated 
in the proposed ISA consume about 30% less storage 
than a corresponding fixed-length RISC-style ISA. 

 

1. Introduction 
 
Two basic techniques for improving processor per-

formance are increasing instruction level parallelism 
(ILP) and increasing pipeline depth (thereby achieving 
a higher clock speed).  Each of these is a challenge on 
its own, and the two techniques are often at odds with 
each other.  For example, attempting to extract higher 
ILP tends to increase the size of the instruction schedul-
ing window, which makes a deeper pipeline more 
difficult.  In addition, the practical problems of imple-
menting a CISC instruction set like the Intel x86 (aka 
IA-32) introduces additional performance challenges.  
For example, splitting or “cracking” an x86 instruction 

into a number of RISC-like micro-operations tends to 
increase the number of operations that must be indi-
vidually issued in order to execute the original 
program. 

We are studying a co-designed virtual machine im-
plementation[17][18][19] of the x86 instruction set that 
uses an underlying implementation instruction set 
which permits combining or “fusing” pairs of depend-
ent instructions. These fused instructions share a 
scheduling window slot and are scheduled by hardware 
as a unit, i.e. as if they were a single instruction.  How-
ever, the instructions actually begin execution in 
successive cycles, as in a conventional superscalar 
processor. Because of the dependency, a fused pair of 
instructions takes at least two clock cycles to execute. 
Furthermore, after instruction fusing is done, many of 
the remaining non-fused instructions also take two or 
more cycles to execute. Under these circumstances, i.e. 
two (or more) cycles of execution latency, the hardware 
scheduling logic can be pipelined both simply and with 
relatively little performance loss. The wakeup and se-
lect functions can be performed in two separate clock 
cycles without relying on speculation.  Thus, the use of 
a fused instruction set 1) allows ILP to be increased 
without adding scheduling window slots and 2) enables 
simple pipelined scheduling logic that is conducive to 
deeper pipelining. 

 
1.1. Illustrative Example 

 
A snippet of x86 code taken from benchmark 

176.gcc is shown at the left of Figure 1.  This code se-
quence contains 15 x86 instructions. A straightforward 
cracking will translate the code sequence into 21 RISC 
style micro-ops. However, if pairs of dependent x86 
RISC-ops are combined into fused instruction pairs 
(shown on the right side of the figure), then the same 
sequence consumes only 13 scheduling window slots in 
the dynamic processor core. 
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  X86 instructions Fused ISA     
Execution 
Latency 

1  mov ebx,ds:[esi + 1c] LD Rebx, [Resi + 1c]   3 
2  test ebx, ebx TEST Rebx, Rebx :: Jz 126 2 
3  jz 08115bf2     
4  LD Rtmp, [Rebx + 02]   3 
5  cmp ds:[ebx + 02], 0d CMP Rtmp, 0d   :: Jz 2f  2 
6  jnz 08115ae1     
7  mov ebx,ds:[ebx + 08] LD Rebx, [Rebx + 08]   3 
8  test ebx, ebx TEST Rebx, Rebx :: Jnz e4  2 
9  jnz 08115bcc     
10  jmp 08115bf2    (direct jmp removed)    
11  add esp, 0c ADD.cc   Resp, 0c     :: LD Rebx,[Resp] 4 
12  pop ebx ADD      Resp, 4   :: LD Resi,[Resp] 4 
13  pop esi  ADD      Resp, 4   :: LD Redi,[Resp] 4 
14  pop edi     ADD      Resp, 4    :: LD Rebp,[Resp] 4 
15  pop ebp     ADD      Resp, 4    :: LD Rtmp,[Resp] 4 
16  ret_near   ADD      Resp, 4      1 
17  BR.ret   Rtmp   1 
  37 Bytes 

 15 x86 instructions 
50 Bytes, 21 RISC-like instructions. 
Consume 13 scheduling window slots 

 

 

Figure 1.  Example from SPEC2000-INT 176.gcc 

 
Instruction formats in the proposed implementation 

ISA may be either 16 or 32 bits long.  The instruction in 
the first line of the example in Figure 1 uses the long, 
32-bit format. Lines 11 through 15 contain two fused 
16-bit instructions.  The two fused instructions are 
shown on the same line, separated by double colons 
“::”. The first instruction in the fused pair is defined to 
be the head and the second is the tail.   

Finally, the number at the end of each line in the 
figure is the minimum number of cycles that each cor-
responding instruction (or fused pair) will take for 
execution. Virtually all of them are two cycles or more.  
The only exception is the last two lines, which have two 
independent instructions that execute in one cycle each.  

 

1.2. Dynamic Binary Translation for x86 

 
In the co-designed VM implementation we are 

studying, dynamic binary translation maps x86 instruc-
tions into the fused instruction set.  We note that the 
native x86 instruction set already contains what are 
essentially fused operations.  For example, the x86 in-
struction add eax,[ebp+4]  performs a load and an 
arithmetic operation. However, the fused instruction set 
we propose allows some forms of operation pairing that 
the x86 does not allow, for example the proposed in-
struction set can fuse a condition test operation 
followed by a conditional branch, or it can fuse two 
simple ALU operations. Furthermore, the optimization 
heuristics we use often fuse operations in different 
combinations than in the original x86 code.  

Dynamic binary translation/optimization using a 
code cache held in main memory has a number of ad-

vantages.  For example, superblock [23] formation, as 
is typically done, leads to improved spatial locality in 
the instruction stream.  Because software is being used 
for optimization, relatively sophisticated algorithms can 
be used; this is the case in the DAISY [18] and Trans-
meta [17] VLIW machines. Finally, because 
optimization is being done dynamically, profile-
directed optimizations can be done transparently, using 
profile data from the program being optimized. 

On the other hand, if one uses software dynamic 
binary translation from a dense instruction set such as 
the x86 to conventional RISC-style instructions, there 
are significant performance disadvantages due to the 
resulting code expansion.  That is, the RISC-style in-
structions will consume more memory space, causing 
reduced instruction cache performance.  In addition, the 
instruction fetch bandwidth would be used much less 
efficiently than with the original x86 code.  Conse-
quently, such an approach is at a considerable 
disadvantage when compared with conventional hard-
ware cracking where x86 instructions are fetched from 
main memory and RISC-ops are formed in the instruc-
tion pipeline [11][12][13][14].  

The proposed fused ISA at least partially over-
comes the code density disadvantage because it permits 
a denser encoding than a conventional RISC ISA. Fre-
quently, two short instructions are combined into a 
single 32-bit word.  For example, in Figure 1, the origi-
nal x86 code consumes 37 bytes of storage.  If this code 
were translated into RISC instructions of 32-bits each, 
then a translated RISC version consumes 84 bytes.  In 
contrast, with our 16/32-bit variable length instructions, 
the program consumes 50 bytes. 
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1.3. Related Work 

The motivation for the proposed co-designed VM 
implementation springs from earlier work on dependent 
instruction strands [4] and on a recent microarchitecture 
proposed by I. Kim and M. Lipasti [3]. The work on 
instruction strands is targeted at a microarchitecture that 
exploits the natural dependences in a program by issu-
ing dependent sequences (strands) from simplified 
FIFO issue queues. However, most sequences of de-
pendent instructions tend to be rather short, often only 
two or three instructions. Consequently, Kim and Li-
pasti proposed hardware fusing of RISC instructions 
(i.e. Alpha) to consume single scheduling window slots.  
They made the key observation that because dependent 
strands are short, then building a microarchitecture that 
exploits only dependent pairs can yield most of the 
performance advantages.   

An important aspect of the approach presented 
here, which sets it apart from the Kim and Lipasti ap-
proach, is the use of the co-designed paradigm with 
software generation of fused instruction pairs.  This 
removes considerable complexity from the hardware 
and enables more sophisticated fusing heuristics. Re-
ducing hardware complexity is especially important 
when starting with a complex instruction set (a second 
important difference from the method described in [3], 
which uses a RISC ISA).  

Some recent x86 implementations have gone in the 
direction of more complex internal operations, at least 
for certain stages of the pipeline. The AMD Opteron 
[14] uses a Macro-Operation designed to reduce the 
dynamic operation count. In most common cases, one 
x86 instruction is mapped to one internal Macro-
Operation.  The Intel Pentium M microarchitecture [12] 
fuses memory store and load operations with the ad-
dress arithmetic operation from the same original x86 
instruction. This is intended to reduce instruction traffic 
through the pipeline for performance and energy effi-
ciency. The operations in each pair are still scheduled 
separately. Our proposed method distinguishes itself 
from these designs by using software fusing of suitable 
operations that may cross original x86 instruction 
boundaries. In fact, as will be shown, more than half of 
the fused instructions contain operations from different 
x86 instructions.  

The IBM POWER4 micro-architecture [15] forms 
5-slot groups of instructions to reduce instruction-
tracking overhead. The slots in each group have fixed 
assignments. This method does not reduce the total 
number of slots in the instruction window or the num-
ber of instructions that are issued.   

The Transmeta Crusoe processor [17] and the IBM 
DAISY [18] are co-designed VMs that have an internal 
VLIW-style instruction set, composed of RISC-like 

operations.  With the VLIW approach, considerable 
software optimization is required for reordering instruc-
tions, especially if speculation is embedded in the 
instruction set.  In contrast, the underlying hardware we 
envision is fully capable of dynamic instruction sched-
uling; the primary software function is superblock 
formation and instruction pairing. Hence, we anticipate 
significantly simpler translation software than in the 
VLIW implementations.  

Methods for implementing fast scheduling logic 
have been published recently. A pipelined solution us-
ing speculation was proposed in [1]. This method is 
based on dynamic detection and tracking of dependence 
chains, and, as with most speculative schemes, it needs 
recovery mechanisms which tend to complicate the 
scheduling logic overall.  Other papers have proposed 
ways of reducing the scheduling logic latency [6][7] or 
pre-scheduling to enable an effectively larger issue 
window with a small physical issue window [8][9][10].  

With regard to dependence-based instruction set 
design, an unimplemented design for a Cray Research 
processor [16] packed multiple dependent operations 
together with an implicit accumulator to chain them 
together.  The research cited above by H.-S. Kim and 
Smith [4] proposed an ISA that chains dependent in-
structions together with an explicit accumulator 
specifier. 

1.4. Paper Overview 

There are two major components to a co-designed 
VM implementation – the dynamic binary translator 
and the supporting microarchitecture. Many of the sig-
nificant microarchitecture issues have been explored by 
Kim and Lipasti [3].  It is our objective in this paper to 
explore the feasibility of (1) using dynamic software 
translation to form fused instruction pairs and (2) apply-
ing the method to a complex instruction set, the x86. 
Hence, we focus on the dynamic binary translation as-
pect with the goal of maximizing the number of fused 
instructions presented to the hardware. We also study 
properties of the translated x86 code to serve as a guide 
for possible fused instruction set revisions and to guide 
microarchitecture design. 

Section 2 describes an instruction set supporting 
fused operations that is designed to implement the x86 
ISA. Section 3 describes aspects of the microarchitec-
ture that are necessary for understanding instruction set 
features and translation optimization heuristics. Section 
4 presents a dynamic binary translator that cracks x86 
instructions into micro-operations, and then fuses and 
optimizes them for the envisioned co-designed proces-
sor. Preliminary dynamic binary translator design 
evaluation and program characterization results are 
presented in section 5. Section 6 concludes the paper. 
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call 0x080af30e (21bit disp)
jcc  0x080115a0
jmp  0x080C0988

LIMM.lo Redx, LO(0x0810a7de)
LIMM.hi Redx, HI(0x0810a7de)
CMP.cc  Reax, 0x4000

LD   Reax, mem[Resp + F8]
ST   Reax, mem[Rebp + 4C]
ADD  Reax, Rebx, 4c

ADD  Reax, Redx, Rebx
Fmac Facc, Fmp1, Fmp2
LD   Reax, mem[Rebx + Rebp]

mov esp, ebp � MOV Resp, Rebp
mov eax,[esp]� LD  Reax, mem[Resp]
add eax, edx �  ADD Reax, Redx

sub ecx, 4 �  SUB Recx, 4
shr esi, 2 �  SHR Resi, 2
inc ecx  �  INC Recx, 1

jcc 3e   e.g. jnz 3e

21-bit Immediate/Displacement10b opcode

11b Immd/Disp10b opcode 5b Rds5b Rsr

16-bit opcode 5b Rds5b Rsr5b Rsr

4b Rd4b Rs  7b op

4b Rd4b I  7b op

8b Immd/Disp  7b op

F

16-bit immeidate / Disp10b opcode 5b Rds

F

F

F

F

F

F

 
 

Figure 2 Proposed Instruction Set 
 

2. A Fused Instruction Set for x86   
 

We first describe the architected register state of 
the proposed fused instruction set, and then describe the 
instruction formats with example instructions.  

2.1. The Architected State  

 
The architected register file has the following state:  

• 32 general-purpose registers, R0 through R31, each 
32-bit wide.  Reads to R15 always return a zero 
value and writes to R15 have no effect on the ar-
chitected state.  

• 32 floating-point, MMX/SSE SIMD extension reg-
isters, F0 through F31, each 128 bits wide.  

• The program counter and condition code (x86 
EFLAGS) registers.  

• System-level or special registers.  
 

2.2. Instructions 

 
The proposed instruction set (Figure 2) contains in-

structions that are in either a long 32-bit format or a 
short 16-bit format. In this study, we explore both the 
case where 32-bit instructions can span two words and 
the case where 32-bit instructions are forced to be 
aligned on 32-bit boundaries with no-op padding when 
necessary.  The latter approach may simplify the hard-
ware implementation.  

The 32-bit formats can encode general 3-operand 
instructions or instructions that need long immediate 

values.  The 16-bit formats are intended to increase 
code density and use an x86-like 2-operand format in 
which one of operands is both a source and a destina-
tion. All short instructions have a corresponding long 
format. Note that short format operations can only ac-
cess the lower 16 registers. However, this does not pose 
any significant problems for our co-designed VM 
scheme. Shown next to each format in Figure 2 are 
example instructions that can be encoded in the format.  

The first bit of each instruction indicates whether 
the instruction should be fused with the immediately 
following instruction. That is, whether the instruction 
dispatch hardware should assign both instructions to the 
same scheduling window slot.  

There are three addressing modes in the co-
designed ISA; the formats are chosen to match the im-
portant x86 addressing modes. 

 
• Register indirect addressing: mem[register]; 
• Register displacement addressing: 
        mem[register + 11b_displacement], and 
• Register indexing addressing:                  

mem[Ra+(Rb<<shmt)]. This mode takes a 3-
register operand format and a shift amount, from 0 
to 3 as used in the x86.  

 
In the instruction formats shown in Figure 2, op-

code and immediate fields are adjacent to each other to 
highlight a potential trade-off of the field lengths; i.e. 
the opcode space can be increased at the expense of the 
immediate field and vice versa.   

Finally, x86 exceptions and interrupts are mapped 
directly into the co-designed implementation ISA.  
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3. Microarchitecture Overview 
 
As noted above, the focus of the study presented 

here is not on the microarchitecture of the proposed co-
designed VM; the goal is to explore the issues that af-
fect the instruction set and dynamic binary translation. 
In this section we briefly overview only those mi-
croarchitecture features that are important for 
understanding the software translation methods and 
instruction set features.  

Overall, the microarchitecture we envision is very 
similar to that used in a conventional out-of-order su-
perscalar processor.  The main difference is in the way 
the instruction scheduler operates. 

 

3.1. Scheduling Window Management 

 
There are two relevant aspects to the scheduling 

window implementation.  The first is the window slot 
contents, and the second is the pipelining of scheduling 
logic. 

Because two fused instructions are dispatched to 
the same scheduling slot, the slot ostensibly needs more 
register specifiers than in a conventional single instruc-
tion slot.  That is, to include information for two 
instructions, the slot could contain up to four source 
registers and two destination registers.  Because renam-
ing is used, the second destination register probably 
does not cause significant delays in the instruction 
scheduling logic beyond those for a single instruction, 
but any additional source register(s) may.   Data to be 
shown later, however, indicates that fused instruction 
pairs with four source registers are very rare, and for 
the significant majority of cases, an implementation 
with only two source registers per scheduling slot will 
suffice.   

Turning to the topic of scheduler pipelining, in or-
der to schedule (and issue) a pair of fused instructions, 
all source operands for the pair must be available. Then, 
the pair of instructions takes at least two cycles to exe-
cute.  Because the total execution latency is at least two 
cycles, scheduling logic wakeup and select functions 
can be done in separate pipeline stages without signifi-
cant performance loss.  That is, the cycle after a two-
cycle instruction is scheduled to start, its completion 
can be anticipated and dependent instructions can be 
awakened.  Then, these newly awakened instructions 
have a full second cycle in which they can be selected 
before their input data is known to be available.    

Note that the microarchitecture does not necessar-
ily require modifications to the register file or 
functional units.  That is, even though a fused pair is 
scheduled as a unit, the two halves of the pair can actu-

ally begin execution in two different (consecutive) 
clock cycles.   We do not assume fused functional units 
[24], and one scheduling decision kicks off two con-
secutive, serialized issues from the same slot. 

 

3.2. Performance Implications 

 
Clearly, using scheduling window slots more effi-

ciently and pipelining the scheduling logic have 
performance advantages, primarily in allowing a faster 
clock cycle for a given level of ILP.  The performance 
disadvantages will take the form of an increased num-
ber of clock cycles for the following reasons.   

First, the result of the head instruction of a pair is 
made immediately available to the tail instruction, but 
all other instructions using the value produced by the 
head must effectively wait an extra cycle. Because most 
data values are consumed by only one instruction [4], 
this will be a relatively uncommon occurrence.  

Second, source operands for both instructions of a 
fused pair must be available before the head instruction 
can begin execution.  Data given in [3] by I. Kim and 
Lipasti indicate that this is also fairly uncommon.     

Third, any instructions data dependent on a non-
fused single-cycle instruction may suffer a penalty due 
to the two-cycle, pipelined scheduling logic.  Here, we 
use heuristics that attempt to maximize the number of 
single-cycle instructions that are fused.  Consequently 
most of the leftover non-fused instructions either do not 
produce register values or tend to take multiple execu-
tion cycles. Data to be given later show that there are 
few single-cycle, non-fused instructions that produce 
register values. 
 
 
4.   Dynamic Binary Translation 

 

The task of our dynamic binary translator is to 
crack x86 instructions from a hot superblock into a 
RISC-like intermediate form and then perform instruc-
tion fusing and other optimizations directed at the co-
designed processor. We first discuss how native regis-
ters are allocated and then describe the binary 
translation steps. Next, we describe instruction fusing 
algorithms for the envisioned micro-architecture.  We 
note that although the translator re-orders instructions, 
the re-ordering is done only for the purpose of fusing 
dependent instructions. The ordering between load and 
store operations is strictly maintained as in the original 
x86 instruction sequence.  
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4.1.State Mapping and Long Immediate Values 

 
To emulate the x86 ISA efficiently, a permanent 

register state mapping is used. The eight x86 general-
purpose registers are mapped to the first eight of the 32 
general purpose integer registers.  This mapping is 
maintained at superblock boundaries.  For the first eight 
registers, we use an x86-like notation for readability 
(e.g. Reax corresponds to x86 eax; this was done in Fig. 
1). Registers R8 to R14 are temporary registers and are 
mostly used for providing local communication be-
tween two operations cracked from the same x86 
instruction.  R15 is the zero register; because x86 bina-
ries have a large number of zero immediate values this 
zero register can reduce dynamic instruction count con-
siderably.  

Registers R16 to R31 are used mainly by virtual 
machine software for x86 interpretation, binary transla-
tion, code cache management, precise state recovery, 
etc.  Using a separate set of registers for VM software 
can avoid the overhead of “context switches” between 
the VM code and the translated native code.   As a con-
sequence, the VM code often uses long format 
instructions rather than the short equivalents. 

Due to the small number of general-purpose regis-
ters in the x86 ISA, x86 binaries tend to have more 
immediate values than a typical RISC binary. For ex-
ample, memory addressing via absolute addresses 
embedded in x86 instructions occurs in about 10% of 
all x86 memory access instructions [5]. These 32-bit 
long immediate values are problematic when translating 
to an instruction set with maximum-length 32-bit in-
structions. A naïve translation would use extra 
instructions to build up every long immediate value. To 
reduce the code expansion that would result, the pro-
posed binary translator collects these long immediate 
values, analyzes the deltas among values to find values 
that “cluster” around a central value, and then converts 
a long immediate operand to: (1) a register operand, if 
the value has already been loaded or (2) a register oper-
and plus or minus a short immediate operand, if the 
immediate value falls within a certain range of an al-
ready registered immediate value. In this manner, an 
absolute addressing instruction can often be converted 
to a register indirect or register displacement addressing 
instruction.  

Experimental results will show that four or five 
registers are usually sufficient for holding immediate 
values used by a superblock, and some or all of these 
can be allocated to registers R11 through R14 to facili-
tate register indirect addressing in the short format. 
Currently, this transformation is limited to within single 
superblocks; in future research we will study more 

global methods for converting long immediates to reg-
ister values. 

 

4.2. Translation Method 

 
We use a hot superblock detection and formation 

algorithm that is a slightly modified version of Dy-
namo's Most Recently Executed Tail (MRET) heuristic 
[20]. Unlike Dynamo, our translator stops constructing 
a superblock when an indirect jump is encountered. We 
use a maximum superblock size of 256 RISC-like op-
erations cracked from x86 instructions and a usage 
counter threshold of 32. The algorithm treats an x86 
string instruction with a repetition prefix as a separate 
superblock that forms a tight loop. After a hot super-
block has been formed, the dynamic binary translator 
performs the following steps.  

1) The x86 instructions are cracked into abstract 
RISC-like micro-operations. Abstract register-to-
register and register-short immediate micro-operations 
are essentially the same as the final generated instruc-
tions. Memory access instructions and instructions with 
embedded long immediate values are transformed into 
abstract micro-operations that preserve the logical se-
mantics of the original x86 instructions.   

2) The superblocks are scanned for long immediate 
values, value clustering analysis is performed, and im-
mediate values are allocated to registers as described in 
the previous subsection.  

3) The abstract micro-operations are transformed 
into instructions belonging to the fused instruction set 
described in Section 2.   

4) Instruction fusing is performed.  After a conven-
tional dependence analysis and setup of the dependence 
chains, dependent instructions are paired together to 
form fused instructions (more detail on the fusing algo-
rithms is given below). Dependent pairs are not fused 
across conditional branches (and indirect jumps, im-
plied by superblock formation). However, dependent 
instructions across direct jumps or calls can be fused. 
Condition codes in the x86 ISA are handled as normal 
data dependences and many fused pairs are in fact 
formed around condition codes.  

5) Register allocation is performed. Note that be-
fore this step all register numbers are pseudo register 
numbers. The issue here is that in order to allow precise 
state recovery as described in Le [22], physical register 
allocation has to be done at this point. As instructions 
are reordered, register live ranges are extended to allow 
precise state recovery. Permanent register state map-
ping is maintained at all superblock boundaries. As we 
will see in the evaluation section, most fused instruc-
tions are consecutive or are at least very close to their 
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locations in the original sequence cracked from x86 
instructions. Consequently, occasional re-ordering of 
translated code does not lead to excessive extra register 
copies for restoring the state mapping at the end of a 
superblock.  

6) Code is generated: The fused ISA instructions 
with fusing information are generated and the translated 
code is added to the code cache for native execution.  

 

4.3. Fusing Algorithms 

 
The objectives of the dynamic instruction fusing 

algorithms are 1) to maximize the number of fused de-
pendent instruction pairs (to optimize usage of 
scheduling window slots) and 2) to minimize the num-
ber of single cycle instructions that are not paired (to 
reduce performance losses from pipelined scheduling 
logic).  A number of heuristics are used.  One heuristic 
is to always use a single-cycle instruction as the head 
instruction of a pair.  A multi-cycle instruction will not 
see performance losses from pipelined scheduling logic, 
so there is relatively little value in using it as a head 
instruction.  A second heuristic is to first try to pair 
instructions that are close together in the original x86 
code sequence. The rationale here is that these pairs are 
more likely to be dependent instructions that need to be 
scheduled for back-to-back execution in order to reduce 
the program’s critical path. Consecutive or close pairs 
also tend to be less problematic with regard to other 
issues, e.g. register live ranges need to be extended less 
in order to provide precise state recovery.  

We concentrate on fusing algorithms that can be 
performed as a single-pass scan in order to enable fast 
dynamic translation.  We consider two possibilities, one 
that does a forward scan and one that does a backward 

scan. After the construction of the data dependence 
graph, a forward scan algorithm considers instructions 
one-by-one as candidate tail instructions. That is, for 
each potential tail, it looks backwards in the instruction 
stream for a head.  It does this by scanning from the 
second instruction to the last instruction in the super-
block attempting to fuse each not-yet-fused instruction 
with the nearest preceding, not-yet-fused single-cycle 
instruction that produces one of its input operands.  A 
backward scan algorithm traverses from the second last 
instruction to the first instruction, and considers each 
instruction as a potential head of a pair.  Each not-yet 
fused single-cycle instruction is fused with the nearest 
not-yet-fused consumer of its generated value. Note that 
the direction of searching for a fusing candidate in these 
algorithms is always opposite to the scan direction, and 
we call this an anti-scan (direction) fusing heuristic. 
The rationale for this will be seen in subsection 4.4. 

Neither the forward nor the backward scan algo-
rithm in the dynamic binary translator is necessarily 
optimal. However, we believe they are near-optimal, 
and in cases we have manually inspected, they capture 
well over 90% of those possible pairs.  

To explore instruction-fusing algorithms further, 
we also studied a more complex, iterative algorithm 
that scans the superblock multiple times, beginning by 
looking for pairs with fusing distance one, i.e. consecu-
tive pairs.  It then looks for distance two pairs, distance 
three pairs, etc. until all fusible instructions have been 
fused or until the full superblock size has been reached. 
Note that distances are measured with respect to loca-
tions in the original micro-operations cracked from the 
x86 binary. Compared to the single-pass scan algo-
rithms, the iterative algorithm performs slightly better 
but it has much more runtime overhead due to its multi-
ple scan passes. 
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Figure 3: Dependence Cycle Detection
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4.4. Dependence Cycle Detection  

 
Although it was not mentioned above, certain data 

dependence patterns inhibit code re-ordering during 
fusion. For example, consider the case where a head 
candidate for a given tail produces a value for both its 
tail instruction and another instruction that separates 
them in the original cracked code sequence. If the 
instruction in the middle also produces an operand for 
the tail (Figure 3a), then making the tail and head 
consecutive instructions (as is done with fusing)  must 
break one of the dependences between the candidate 
pair and the “middle” instruction.  Note that in Figure 3, 
the vertical position of each node shows its order in the 
original sequence cracked from the x86 code. For ex-
ample, A precedes B; C precedes D and so on. Other 
situations where data dependences can prevent fusing 
involve cross dependence of two candidate pairs (Fig-
ures 3b and 3c). However, analysis of these cases is not 
as straightforward as in figure 3a. Thus, we need an 
algorithm to avoid breaking data dependences in the 
data dependence graph.     

A property of the anti-scan fusing heuristic is that it 
assures that the pairing shown in Figure 3b does not 
occur. In the case shown in Figures 3b and 3c, the algo-
rithm will first consider pairing C with B rather than D 
with B, because B is the nearest operand producer for 
C. Consequently, the only pairing considered is the one 
shown in Fig 3c.  

Now, there is an advantage to reducing cross de-
pendences to the case in Figure 3c versus the case in 
Figure 3b. That is, while considering candidate instruc-
tions for pairing, we only need to consider instructions 
between the candidate head and tail for potential de-
pendence cycles. Note that according to the anti-scan 
fusing heuristic, B and C are paired first for either the 
forward or backward scan method before A and D are 
considered. In contrast, one has to analyze dependent 
instructions either before the head or after the tail if the 
case shown in Figure 3b can occur.   

The general case for detecting dependence cycles, 
of which Figure 3a and 3c are special cases, is modeled 
in Figure 3d. Under the anti-scan fusing heuristic, the 
data dependence cycle detection algorithm only needs 
to consider nodes between the candidate head and tail 
when looking for potential cycles (which inhibit fus-
ing). 
 
 
5.   Evaluation  

 
The experimental infrastructure is a full system x86 

virtual machine, x86vm, we are currently developing. It 

consists of three major components: (1) An x86 inter-
preter/functional simulator extracted from open source 
BOCHS 2.0.2 [21]; (2) A dynamic binary translator that 
cracks x86 instructions into RISC-like micro-operations 
and optimizes them as described in the previous section; 
(3) A microarchitecture simulator. We present program 
characterization and dynamic binary translation results 
with SPEC2000 integer benchmarks. Benchmark binaries 
are generated by Intel C/C++ v7.1 compiler with –O3 
SPEC2000 base optimization options (Binaries generated 
by GCC show similar results). Note that due to the lower 
precision of floating-point instructions (64-bits instead of 
80-bits as in IA-32), simulation of some integer bench-
marks (175.vpr, 252.eon, 300.twolf) does not generate 
exactly the same results as Intel processors.   

Preliminary profiling data indicate that overhead for 
our dynamic binary translator is about one to two micro-
seconds per x86 instruction translated on a 1.80GHz 
Pentium 4 desktop. However, this version of the dynamic 
binary translator is written in C++ for readability and 
flexibility rather than for performance. Substantial per-
formance improvement is anticipated for a product 
dynamic binary translator, for example, by merging some 
passes described in subsection 4.2 and by coding it in 
highly optimized native assembly.  

 

5.1. Superblock Size 
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Figure 4 Dynamic Superblock Size 

 
First, we give some basic results regarding super-

block size.  Although not strictly related to the main topic 
of the paper, these are important for assuring good per-
formance in a code cache implementation.  In Figure 4, 
the left bars show the average number of x86 instructions 
per dynamic superblock if x86 repetitive string instruc-
tions are not treated as separate superblocks. The right 
bars show superblock size if they are treated as separate 
superblocks. On average, about 15 x86-instruction-
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equivalent operations are executed per superblock. The 
separate superblocks for string instructions bring down 
the average number, but they do not break the require-
ment that the first instruction in the superblock is the 
only entry point. A better solution might embed the 
string loops inside an outer superblock and perform no 
dependence analysis across string loops.   

 

5.2. Immediate Conversion 

 
As discussed in Section 4, we exploit long immedi-

ate value conversion to reduce instruction count. There 
are two types of immediate values in x86 instructions, 
immediate operands and displacements for address cal-
culation. Because program code and data sections are 
usually clustered together, displacement values are 
more amenable to our long immediate conversion algo-
rithm. As shown in Figure 5. More than half of the long 
displacements are successfully converted. As men-
tioned before, about 10% of x86 addresses are 
generated from absolute addresses embedded in x86 
instructions, so this conversion notably reduces the 
code expansion associated with cracking x86 instruc-
tions into our fused instruction set. On the other hand, 
long immediate operands are in general much harder to 
convert. Fewer than 10% can be converted, which re-
duces the aggregate conversion rate for all long 
immediate values to less than 40%.  

The number of temporary registers needed for 
holding long immediate values is moderate. In most 
benchmark programs, 4 or 5 registers will be sufficient 
to handle more than 99% (y-axis in Figure 6) of the 
dynamic superblocks. Only in some rare cases, e.g. 
186.crafty, 8 or more registers are actually needed as 
shown in Figure 6. 
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 Figure 5 Percent Long Immediate Values Converted 
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Figure 6 Number of Registers Required for Holding 

Long Immediate Values 

5.3. Instruction Density 

An ISA with good coding density can reduce instruc-
tion fetch bandwidth and improve I-cache performance. In 
this experiment, we assume an unbounded code cache to 
exclude replacement, and then compare the total transla-
tion size. Results are shown in Figure 7.  The first bar for 
each benchmark is the normalized code size for original 
x86 code organized into the same superblocks as used 
during translation.  All the bars of each set are normalized 
with respect to the first one.  The second bar shows the 
total code size for the proposed 16/32-bit fused ISA.  On 
average, the translated benchmarks consume about 33% 
more space than the x86 code.  On the other hand, if a 
fixed-length (32-bits) conventional RISC-style ISA is 
used (the fourth bar), the expansion is from 60% to over 
100%. If the 16/32-bit instruction set is used, but with 
alignment of 32-bit instructions to 32-bit instruction word 
boundaries (with no-op padding when needed), about 9% 
additional storage is required as shown by the third set of 
bars in Figure 7. 
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Figure 7 Static Translation Size Comparison 
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Figure 8 Dynamic Scheduling Density 

 
We define the dynamic scheduling density of an 

ISA as the average number of RISC-like operations 
handled by each scheduling window slot.  We compare 
dynamic scheduling density between x86 code cracked 
into RISC micro-operations and code using the fused 
ISA (which essentially fuses the same RISC micro-
ops).  Because most x86 superscalar processors allocate 
one scheduling window slot for each RISC operation, 
the x86/RISC model has a dynamic scheduling density 
of 1.0 by definition.  With the fused ISA, each schedul-
ing slot handles on average 1.4 ~ 1.5 RISC operations 
(Figure 8).  Hence, one could potentially reduce the 
number of scheduling slots by about 30% and achieve 
the same instruction level parallelism as with a conven-
tional x86 implementation (verification of this awaits 
future micro architecture simulation). 

 

5.4. Fusing Heuristics 

 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

164.gzip 

175.vpr 

176.gcc 

181.mcf 

186.crafty 

197.parser 

252.eon 

253.perlbmk 

254.gap 

255.vortex 

256.bzip2 

300.twolf 

Percentage of Candidate Pairs

fusion B-lost C-lost

 
 

Figure 9 Instruction Fusing Profile 
 

We now characterize x86 binary fusing properties 
and evaluate the effectiveness of the fusing heuristics. In 
this experiment, we name two instructions as a candidate 
pair, if: (1) neither of them has been fused with other in-
structions; (2) there is dependence between them; and (3) 
the head is a single-cycle instruction. After a candidate 
pair is found, it must pass two main fusing criteria before 
it is actually fused.  The fusing criteria are 1) whether 
there is a conditional branch between the head and the 
tail, 2) whether there is a dependence cycle in the data 
dependence graph.  
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Figure 10 Head/Tail distance distribution 
 

 
As shown in Figure 9, over 90% of the candidate 

pairs found in the data dependence graph are successfully 
fused. The major reason for pairs failing to fuse is that 
they are separated by conditional branches. These are the 
B-lost segments in Figure 9, and they amount to less than 
10% of the candidate pairs.  The pairs failing to fuse due 
to cycles in data dependence graph (C-lost in Figure 9) 
are negligible. Figure 10 shows the distance distribution 
of the head and tail in terms of the original micro-
operation sequence cracked from the x86 binary. Here the 
single-pass forward scan algorithm is used. More than 
80% of the fused pairs are consecutive micro-operations 
in the original sequence. Slightly more pairs are consecu-
tive if the iterative pairing algorithm is used. Although it 
is not shown, the forward scan algorithm performs 
slightly better (~1% in terms of fused pairs) than the 
backward scan. 

 

5.5. Code Reorganization 

 
More than half of the fused instructions are com-

posed of two micro-operations from different original x86 
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instructions (X-fuse bars in Figure 11). This implies 
that instruction fusing reorganizes the executable binary 
for the underlying co-designed hardware, rather than 
performing a simple reverse of the initial x86 cracking. 
Figure 11 also shows that, on average, more than 60% 
of paired instructions are single-single cycle pairs (S-
fuse bars). As one may infer, our data shows that for all 
of the instructions translated and placed into the code 
cache, about 65% of them are paired together for allo-
cation as a single entry for the scheduling logic. Among 
those non-fused instructions, memory access instruc-
tions and branches take nearly 80% as shown in figure 
12. ALU operations are 23%. As there are about 35% 
non-fused instructions in the code cache, this implies 
that single-cycle non-fused ALU instructions make up 
about 8% of instructions.  This tends to back up our 
earlier assertion that single cycle non-fused ALU 
instructions will cause relatively little IPC loss when 
scheduling logic is pipelined.  
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Figure 11 Fused Instruction Profile 
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Figure 12 Non-fused Instruction Profile 

5.6. Numbers of Source Operands 

 
Finally, we consider the matter of the number of reg-

ister specifiers in a scheduling window slot.  As was 
noted earlier, in theory, pairing instructions together may 
require scheduling slots with twice as many source regis-
ter specifiers than a conventional scheduling window slot. 
However, Figure 13 shows that almost all fused instruc-
tion pairs have three or fewer input register specifiers. 
About 95% of them have two or fewer input register 
specifiers. Thus, instruction fusing does not necessarily 
complicate the design of the instruction-scheduling win-
dow; a window slot with two source register specifiers is 
probably sufficient.  
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Figure 13 Number of Source Operands for Fused pairs 
 
 
6.  Conclusions and Future Research 
 

The results presented here indicate that using dy-
namic binary translation is a good way to perform 
instruction fusing, especially for implementing the x86 
instruction set.  With regard to the fused instruction set, 
we conclude that (1) although there is some code expan-
sion, we feel that it is reasonable, and is significantly less 
than if translation were to a conventional fixed-length 
RISC ISA. (2)  There is a high degree of fusing, which 
allows each scheduling slot to handle an average of nearly 
1.5 RISC operations (compared with one RISC operation 
in a conventional design that uses hardware cracking). (3) 
There are relatively few single cycle ALU instructions 
that are not fused, which indicates that pipelining the 
scheduling logic will not be especially detrimental to per-
formance (i.e. instructions per cycle). And, (4) the 
individual scheduling window slots do not require more 
than two source register specifiers (although a third speci-
fier will help in a small percentage of cases). Our 
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experiments also verified the effectiveness of the algo-
rithms developed for the dynamic binary translator. We 
found that they are both simple (fast) and effective. 

 With the binary translator in hand, we plan to 
complete the study of the proposed co-designed VM 
implementation of the x86 instruction set. The design of 
the microarchitecture will be completed, and a simula-
tor will be coupled with the binary translator so that the 
complete VM system can be evaluated. The objective is 
to verify that the performance potential we have identi-
fied in this paper can, in fact, be achieved. 
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