
 1

Using Dynamic Binary Translation to Fuse Dependent Instructions

Shiliang Hu
Dept. of Computer Sciences

University of Wisconsin - Madison
shiliang@cs.wisc.edu

James E. Smith
 Dept. of Electrical & Computer Engineering

University of Wisconsin - Madison
 jes@ece.wisc.edu

Abstract

Instruction scheduling hardware can be simplified
and easily pipelined if pairs of dependent instructions
are fused so they share a single instruction scheduling
slot. We study an implementation of the x86 ISA that
dynamically translates x86 code to an underlying ISA
that supports instruction fusing. A microarchitecture
that is co-designed with the fused instruction set com-
pletes the implementation.

In this paper, we focus on the dynamic binary
translator for such a co-designed x86 virtual machine.
The dynamic binary translator first cracks x86 instruc-
tions belonging to hot superblocks into RISC-style
micro-operations, and then uses heuristics to fuse to-
gether pairs of dependent micro-operations.
Experimental results with SPEC2000 integer bench-
marks demonstrate that: (1) the fused ISA with dynamic
binary translation reduces the number of scheduling
decisions by about 30% versus a conventional
implementation that uses hardware cracking into RISC
micro-operations; (2) an instruction scheduling slot
needs only hold two source register fields even though
it may hold two instructions; (3) translations generated
in the proposed ISA consume about 30% less storage
than a corresponding fixed-length RISC-style ISA.

1. Introduction

Two basic techniques for improving processor per-

formance are increasing instruction level parallelism
(ILP) and increasing pipeline depth (thereby achieving
a higher clock speed). Each of these is a challenge on
its own, and the two techniques are often at odds with
each other. For example, attempting to extract higher
ILP tends to increase the size of the instruction schedul-
ing window, which makes a deeper pipeline more
difficult. In addition, the practical problems of imple-
menting a CISC instruction set like the Intel x86 (aka
IA-32) introduces additional performance challenges.
For example, splitting or “cracking” an x86 instruction

into a number of RISC-like micro-operations tends to
increase the number of operations that must be indi-
vidually issued in order to execute the original
program.

We are studying a co-designed virtual machine im-
plementation[17][18][19] of the x86 instruction set that
uses an underlying implementation instruction set
which permits combining or “fusing” pairs of depend-
ent instructions. These fused instructions share a
scheduling window slot and are scheduled by hardware
as a unit, i.e. as if they were a single instruction. How-
ever, the instructions actually begin execution in
successive cycles, as in a conventional superscalar
processor. Because of the dependency, a fused pair of
instructions takes at least two clock cycles to execute.
Furthermore, after instruction fusing is done, many of
the remaining non-fused instructions also take two or
more cycles to execute. Under these circumstances, i.e.
two (or more) cycles of execution latency, the hardware
scheduling logic can be pipelined both simply and with
relatively little performance loss. The wakeup and se-
lect functions can be performed in two separate clock
cycles without relying on speculation. Thus, the use of
a fused instruction set 1) allows ILP to be increased
without adding scheduling window slots and 2) enables
simple pipelined scheduling logic that is conducive to
deeper pipelining.

1.1. Illustrative Example

A snippet of x86 code taken from benchmark

176.gcc is shown at the left of Figure 1. This code se-
quence contains 15 x86 instructions. A straightforward
cracking will translate the code sequence into 21 RISC
style micro-ops. However, if pairs of dependent x86
RISC-ops are combined into fused instruction pairs
(shown on the right side of the figure), then the same
sequence consumes only 13 scheduling window slots in
the dynamic processor core.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 2

 X86 instructions Fused ISA
Execution
Latency

1 mov ebx,ds:[esi + 1c] LD Rebx, [Resi + 1c] 3
2 test ebx, ebx TEST Rebx, Rebx :: Jz 126 2
3 jz 08115bf2
4 LD Rtmp, [Rebx + 02] 3
5 cmp ds:[ebx + 02], 0d CMP Rtmp, 0d :: Jz 2f 2
6 jnz 08115ae1
7 mov ebx,ds:[ebx + 08] LD Rebx, [Rebx + 08] 3
8 test ebx, ebx TEST Rebx, Rebx :: Jnz e4 2
9 jnz 08115bcc
10 jmp 08115bf2 (direct jmp removed)
11 add esp, 0c ADD.cc Resp, 0c :: LD Rebx,[Resp] 4
12 pop ebx ADD Resp, 4 :: LD Resi,[Resp] 4
13 pop esi ADD Resp, 4 :: LD Redi,[Resp] 4
14 pop edi ADD Resp, 4 :: LD Rebp,[Resp] 4
15 pop ebp ADD Resp, 4 :: LD Rtmp,[Resp] 4
16 ret_near ADD Resp, 4 1
17 BR.ret Rtmp 1
 37 Bytes

 15 x86 instructions
50 Bytes, 21 RISC-like instructions.
Consume 13 scheduling window slots

Figure 1. Example from SPEC2000-INT 176.gcc

Instruction formats in the proposed implementation

ISA may be either 16 or 32 bits long. The instruction in
the first line of the example in Figure 1 uses the long,
32-bit format. Lines 11 through 15 contain two fused
16-bit instructions. The two fused instructions are
shown on the same line, separated by double colons
“::”. The first instruction in the fused pair is defined to
be the head and the second is the tail.

Finally, the number at the end of each line in the
figure is the minimum number of cycles that each cor-
responding instruction (or fused pair) will take for
execution. Virtually all of them are two cycles or more.
The only exception is the last two lines, which have two
independent instructions that execute in one cycle each.

1.2. Dynamic Binary Translation for x86

In the co-designed VM implementation we are

studying, dynamic binary translation maps x86 instruc-
tions into the fused instruction set. We note that the
native x86 instruction set already contains what are
essentially fused operations. For example, the x86 in-
struction add eax,[ebp+4] performs a load and an
arithmetic operation. However, the fused instruction set
we propose allows some forms of operation pairing that
the x86 does not allow, for example the proposed in-
struction set can fuse a condition test operation
followed by a conditional branch, or it can fuse two
simple ALU operations. Furthermore, the optimization
heuristics we use often fuse operations in different
combinations than in the original x86 code.

Dynamic binary translation/optimization using a
code cache held in main memory has a number of ad-

vantages. For example, superblock [23] formation, as
is typically done, leads to improved spatial locality in
the instruction stream. Because software is being used
for optimization, relatively sophisticated algorithms can
be used; this is the case in the DAISY [18] and Trans-
meta [17] VLIW machines. Finally, because
optimization is being done dynamically, profile-
directed optimizations can be done transparently, using
profile data from the program being optimized.

On the other hand, if one uses software dynamic
binary translation from a dense instruction set such as
the x86 to conventional RISC-style instructions, there
are significant performance disadvantages due to the
resulting code expansion. That is, the RISC-style in-
structions will consume more memory space, causing
reduced instruction cache performance. In addition, the
instruction fetch bandwidth would be used much less
efficiently than with the original x86 code. Conse-
quently, such an approach is at a considerable
disadvantage when compared with conventional hard-
ware cracking where x86 instructions are fetched from
main memory and RISC-ops are formed in the instruc-
tion pipeline [11][12][13][14].

The proposed fused ISA at least partially over-
comes the code density disadvantage because it permits
a denser encoding than a conventional RISC ISA. Fre-
quently, two short instructions are combined into a
single 32-bit word. For example, in Figure 1, the origi-
nal x86 code consumes 37 bytes of storage. If this code
were translated into RISC instructions of 32-bits each,
then a translated RISC version consumes 84 bytes. In
contrast, with our 16/32-bit variable length instructions,
the program consumes 50 bytes.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 3

1.3. Related Work

The motivation for the proposed co-designed VM
implementation springs from earlier work on dependent
instruction strands [4] and on a recent microarchitecture
proposed by I. Kim and M. Lipasti [3]. The work on
instruction strands is targeted at a microarchitecture that
exploits the natural dependences in a program by issu-
ing dependent sequences (strands) from simplified
FIFO issue queues. However, most sequences of de-
pendent instructions tend to be rather short, often only
two or three instructions. Consequently, Kim and Li-
pasti proposed hardware fusing of RISC instructions
(i.e. Alpha) to consume single scheduling window slots.
They made the key observation that because dependent
strands are short, then building a microarchitecture that
exploits only dependent pairs can yield most of the
performance advantages.

An important aspect of the approach presented
here, which sets it apart from the Kim and Lipasti ap-
proach, is the use of the co-designed paradigm with
software generation of fused instruction pairs. This
removes considerable complexity from the hardware
and enables more sophisticated fusing heuristics. Re-
ducing hardware complexity is especially important
when starting with a complex instruction set (a second
important difference from the method described in [3],
which uses a RISC ISA).

Some recent x86 implementations have gone in the
direction of more complex internal operations, at least
for certain stages of the pipeline. The AMD Opteron
[14] uses a Macro-Operation designed to reduce the
dynamic operation count. In most common cases, one
x86 instruction is mapped to one internal Macro-
Operation. The Intel Pentium M microarchitecture [12]
fuses memory store and load operations with the ad-
dress arithmetic operation from the same original x86
instruction. This is intended to reduce instruction traffic
through the pipeline for performance and energy effi-
ciency. The operations in each pair are still scheduled
separately. Our proposed method distinguishes itself
from these designs by using software fusing of suitable
operations that may cross original x86 instruction
boundaries. In fact, as will be shown, more than half of
the fused instructions contain operations from different
x86 instructions.

The IBM POWER4 micro-architecture [15] forms
5-slot groups of instructions to reduce instruction-
tracking overhead. The slots in each group have fixed
assignments. This method does not reduce the total
number of slots in the instruction window or the num-
ber of instructions that are issued.

The Transmeta Crusoe processor [17] and the IBM
DAISY [18] are co-designed VMs that have an internal
VLIW-style instruction set, composed of RISC-like

operations. With the VLIW approach, considerable
software optimization is required for reordering instruc-
tions, especially if speculation is embedded in the
instruction set. In contrast, the underlying hardware we
envision is fully capable of dynamic instruction sched-
uling; the primary software function is superblock
formation and instruction pairing. Hence, we anticipate
significantly simpler translation software than in the
VLIW implementations.

Methods for implementing fast scheduling logic
have been published recently. A pipelined solution us-
ing speculation was proposed in [1]. This method is
based on dynamic detection and tracking of dependence
chains, and, as with most speculative schemes, it needs
recovery mechanisms which tend to complicate the
scheduling logic overall. Other papers have proposed
ways of reducing the scheduling logic latency [6][7] or
pre-scheduling to enable an effectively larger issue
window with a small physical issue window [8][9][10].

With regard to dependence-based instruction set
design, an unimplemented design for a Cray Research
processor [16] packed multiple dependent operations
together with an implicit accumulator to chain them
together. The research cited above by H.-S. Kim and
Smith [4] proposed an ISA that chains dependent in-
structions together with an explicit accumulator
specifier.

1.4. Paper Overview

There are two major components to a co-designed
VM implementation – the dynamic binary translator
and the supporting microarchitecture. Many of the sig-
nificant microarchitecture issues have been explored by
Kim and Lipasti [3]. It is our objective in this paper to
explore the feasibility of (1) using dynamic software
translation to form fused instruction pairs and (2) apply-
ing the method to a complex instruction set, the x86.
Hence, we focus on the dynamic binary translation as-
pect with the goal of maximizing the number of fused
instructions presented to the hardware. We also study
properties of the translated x86 code to serve as a guide
for possible fused instruction set revisions and to guide
microarchitecture design.

Section 2 describes an instruction set supporting
fused operations that is designed to implement the x86
ISA. Section 3 describes aspects of the microarchitec-
ture that are necessary for understanding instruction set
features and translation optimization heuristics. Section
4 presents a dynamic binary translator that cracks x86
instructions into micro-operations, and then fuses and
optimizes them for the envisioned co-designed proces-
sor. Preliminary dynamic binary translator design
evaluation and program characterization results are
presented in section 5. Section 6 concludes the paper.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 4

call 0x080af30e (21bit disp)
jcc 0x080115a0
jmp 0x080C0988

LIMM.lo Redx, LO(0x0810a7de)
LIMM.hi Redx, HI(0x0810a7de)
CMP.cc Reax, 0x4000

LD Reax, mem[Resp + F8]
ST Reax, mem[Rebp + 4C]
ADD Reax, Rebx, 4c

ADD Reax, Redx, Rebx
Fmac Facc, Fmp1, Fmp2
LD Reax, mem[Rebx + Rebp]

mov esp, ebp � MOV Resp, Rebp
mov eax,[esp]� LD Reax, mem[Resp]
add eax, edx � ADD Reax, Redx

sub ecx, 4 � SUB Recx, 4
shr esi, 2 � SHR Resi, 2
inc ecx � INC Recx, 1

jcc 3e e.g. jnz 3e

21-bit Immediate/Displacement10b opcode

11b Immd/Disp10b opcode 5b Rds5b Rsr

16-bit opcode 5b Rds5b Rsr5b Rsr

4b Rd4b Rs 7b op

4b Rd4b I 7b op

8b Immd/Disp 7b op

F

16-bit immeidate / Disp10b opcode 5b Rds

F

F

F

F

F

F

Figure 2 Proposed Instruction Set

2. A Fused Instruction Set for x86

We first describe the architected register state of
the proposed fused instruction set, and then describe the
instruction formats with example instructions.

2.1. The Architected State

The architected register file has the following state:

• 32 general-purpose registers, R0 through R31, each
32-bit wide. Reads to R15 always return a zero
value and writes to R15 have no effect on the ar-
chitected state.

• 32 floating-point, MMX/SSE SIMD extension reg-
isters, F0 through F31, each 128 bits wide.

• The program counter and condition code (x86
EFLAGS) registers.

• System-level or special registers.

2.2. Instructions

The proposed instruction set (Figure 2) contains in-

structions that are in either a long 32-bit format or a
short 16-bit format. In this study, we explore both the
case where 32-bit instructions can span two words and
the case where 32-bit instructions are forced to be
aligned on 32-bit boundaries with no-op padding when
necessary. The latter approach may simplify the hard-
ware implementation.

The 32-bit formats can encode general 3-operand
instructions or instructions that need long immediate

values. The 16-bit formats are intended to increase
code density and use an x86-like 2-operand format in
which one of operands is both a source and a destina-
tion. All short instructions have a corresponding long
format. Note that short format operations can only ac-
cess the lower 16 registers. However, this does not pose
any significant problems for our co-designed VM
scheme. Shown next to each format in Figure 2 are
example instructions that can be encoded in the format.

The first bit of each instruction indicates whether
the instruction should be fused with the immediately
following instruction. That is, whether the instruction
dispatch hardware should assign both instructions to the
same scheduling window slot.

There are three addressing modes in the co-
designed ISA; the formats are chosen to match the im-
portant x86 addressing modes.

• Register indirect addressing: mem[register];
• Register displacement addressing:
 mem[register + 11b_displacement], and
• Register indexing addressing:

mem[Ra+(Rb<<shmt)]. This mode takes a 3-
register operand format and a shift amount, from 0
to 3 as used in the x86.

In the instruction formats shown in Figure 2, op-

code and immediate fields are adjacent to each other to
highlight a potential trade-off of the field lengths; i.e.
the opcode space can be increased at the expense of the
immediate field and vice versa.

Finally, x86 exceptions and interrupts are mapped
directly into the co-designed implementation ISA.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 5

3. Microarchitecture Overview

As noted above, the focus of the study presented

here is not on the microarchitecture of the proposed co-
designed VM; the goal is to explore the issues that af-
fect the instruction set and dynamic binary translation.
In this section we briefly overview only those mi-
croarchitecture features that are important for
understanding the software translation methods and
instruction set features.

Overall, the microarchitecture we envision is very
similar to that used in a conventional out-of-order su-
perscalar processor. The main difference is in the way
the instruction scheduler operates.

3.1. Scheduling Window Management

There are two relevant aspects to the scheduling

window implementation. The first is the window slot
contents, and the second is the pipelining of scheduling
logic.

Because two fused instructions are dispatched to
the same scheduling slot, the slot ostensibly needs more
register specifiers than in a conventional single instruc-
tion slot. That is, to include information for two
instructions, the slot could contain up to four source
registers and two destination registers. Because renam-
ing is used, the second destination register probably
does not cause significant delays in the instruction
scheduling logic beyond those for a single instruction,
but any additional source register(s) may. Data to be
shown later, however, indicates that fused instruction
pairs with four source registers are very rare, and for
the significant majority of cases, an implementation
with only two source registers per scheduling slot will
suffice.

Turning to the topic of scheduler pipelining, in or-
der to schedule (and issue) a pair of fused instructions,
all source operands for the pair must be available. Then,
the pair of instructions takes at least two cycles to exe-
cute. Because the total execution latency is at least two
cycles, scheduling logic wakeup and select functions
can be done in separate pipeline stages without signifi-
cant performance loss. That is, the cycle after a two-
cycle instruction is scheduled to start, its completion
can be anticipated and dependent instructions can be
awakened. Then, these newly awakened instructions
have a full second cycle in which they can be selected
before their input data is known to be available.

Note that the microarchitecture does not necessar-
ily require modifications to the register file or
functional units. That is, even though a fused pair is
scheduled as a unit, the two halves of the pair can actu-

ally begin execution in two different (consecutive)
clock cycles. We do not assume fused functional units
[24], and one scheduling decision kicks off two con-
secutive, serialized issues from the same slot.

3.2. Performance Implications

Clearly, using scheduling window slots more effi-

ciently and pipelining the scheduling logic have
performance advantages, primarily in allowing a faster
clock cycle for a given level of ILP. The performance
disadvantages will take the form of an increased num-
ber of clock cycles for the following reasons.

First, the result of the head instruction of a pair is
made immediately available to the tail instruction, but
all other instructions using the value produced by the
head must effectively wait an extra cycle. Because most
data values are consumed by only one instruction [4],
this will be a relatively uncommon occurrence.

Second, source operands for both instructions of a
fused pair must be available before the head instruction
can begin execution. Data given in [3] by I. Kim and
Lipasti indicate that this is also fairly uncommon.

Third, any instructions data dependent on a non-
fused single-cycle instruction may suffer a penalty due
to the two-cycle, pipelined scheduling logic. Here, we
use heuristics that attempt to maximize the number of
single-cycle instructions that are fused. Consequently
most of the leftover non-fused instructions either do not
produce register values or tend to take multiple execu-
tion cycles. Data to be given later show that there are
few single-cycle, non-fused instructions that produce
register values.

4. Dynamic Binary Translation

The task of our dynamic binary translator is to
crack x86 instructions from a hot superblock into a
RISC-like intermediate form and then perform instruc-
tion fusing and other optimizations directed at the co-
designed processor. We first discuss how native regis-
ters are allocated and then describe the binary
translation steps. Next, we describe instruction fusing
algorithms for the envisioned micro-architecture. We
note that although the translator re-orders instructions,
the re-ordering is done only for the purpose of fusing
dependent instructions. The ordering between load and
store operations is strictly maintained as in the original
x86 instruction sequence.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 6

4.1.State Mapping and Long Immediate Values

To emulate the x86 ISA efficiently, a permanent

register state mapping is used. The eight x86 general-
purpose registers are mapped to the first eight of the 32
general purpose integer registers. This mapping is
maintained at superblock boundaries. For the first eight
registers, we use an x86-like notation for readability
(e.g. Reax corresponds to x86 eax; this was done in Fig.
1). Registers R8 to R14 are temporary registers and are
mostly used for providing local communication be-
tween two operations cracked from the same x86
instruction. R15 is the zero register; because x86 bina-
ries have a large number of zero immediate values this
zero register can reduce dynamic instruction count con-
siderably.

Registers R16 to R31 are used mainly by virtual
machine software for x86 interpretation, binary transla-
tion, code cache management, precise state recovery,
etc. Using a separate set of registers for VM software
can avoid the overhead of “context switches” between
the VM code and the translated native code. As a con-
sequence, the VM code often uses long format
instructions rather than the short equivalents.

Due to the small number of general-purpose regis-
ters in the x86 ISA, x86 binaries tend to have more
immediate values than a typical RISC binary. For ex-
ample, memory addressing via absolute addresses
embedded in x86 instructions occurs in about 10% of
all x86 memory access instructions [5]. These 32-bit
long immediate values are problematic when translating
to an instruction set with maximum-length 32-bit in-
structions. A naïve translation would use extra
instructions to build up every long immediate value. To
reduce the code expansion that would result, the pro-
posed binary translator collects these long immediate
values, analyzes the deltas among values to find values
that “cluster” around a central value, and then converts
a long immediate operand to: (1) a register operand, if
the value has already been loaded or (2) a register oper-
and plus or minus a short immediate operand, if the
immediate value falls within a certain range of an al-
ready registered immediate value. In this manner, an
absolute addressing instruction can often be converted
to a register indirect or register displacement addressing
instruction.

Experimental results will show that four or five
registers are usually sufficient for holding immediate
values used by a superblock, and some or all of these
can be allocated to registers R11 through R14 to facili-
tate register indirect addressing in the short format.
Currently, this transformation is limited to within single
superblocks; in future research we will study more

global methods for converting long immediates to reg-
ister values.

4.2. Translation Method

We use a hot superblock detection and formation

algorithm that is a slightly modified version of Dy-
namo's Most Recently Executed Tail (MRET) heuristic
[20]. Unlike Dynamo, our translator stops constructing
a superblock when an indirect jump is encountered. We
use a maximum superblock size of 256 RISC-like op-
erations cracked from x86 instructions and a usage
counter threshold of 32. The algorithm treats an x86
string instruction with a repetition prefix as a separate
superblock that forms a tight loop. After a hot super-
block has been formed, the dynamic binary translator
performs the following steps.

1) The x86 instructions are cracked into abstract
RISC-like micro-operations. Abstract register-to-
register and register-short immediate micro-operations
are essentially the same as the final generated instruc-
tions. Memory access instructions and instructions with
embedded long immediate values are transformed into
abstract micro-operations that preserve the logical se-
mantics of the original x86 instructions.

2) The superblocks are scanned for long immediate
values, value clustering analysis is performed, and im-
mediate values are allocated to registers as described in
the previous subsection.

3) The abstract micro-operations are transformed
into instructions belonging to the fused instruction set
described in Section 2.

4) Instruction fusing is performed. After a conven-
tional dependence analysis and setup of the dependence
chains, dependent instructions are paired together to
form fused instructions (more detail on the fusing algo-
rithms is given below). Dependent pairs are not fused
across conditional branches (and indirect jumps, im-
plied by superblock formation). However, dependent
instructions across direct jumps or calls can be fused.
Condition codes in the x86 ISA are handled as normal
data dependences and many fused pairs are in fact
formed around condition codes.

5) Register allocation is performed. Note that be-
fore this step all register numbers are pseudo register
numbers. The issue here is that in order to allow precise
state recovery as described in Le [22], physical register
allocation has to be done at this point. As instructions
are reordered, register live ranges are extended to allow
precise state recovery. Permanent register state map-
ping is maintained at all superblock boundaries. As we
will see in the evaluation section, most fused instruc-
tions are consecutive or are at least very close to their

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 7

locations in the original sequence cracked from x86
instructions. Consequently, occasional re-ordering of
translated code does not lead to excessive extra register
copies for restoring the state mapping at the end of a
superblock.

6) Code is generated: The fused ISA instructions
with fusing information are generated and the translated
code is added to the code cache for native execution.

4.3. Fusing Algorithms

The objectives of the dynamic instruction fusing

algorithms are 1) to maximize the number of fused de-
pendent instruction pairs (to optimize usage of
scheduling window slots) and 2) to minimize the num-
ber of single cycle instructions that are not paired (to
reduce performance losses from pipelined scheduling
logic). A number of heuristics are used. One heuristic
is to always use a single-cycle instruction as the head
instruction of a pair. A multi-cycle instruction will not
see performance losses from pipelined scheduling logic,
so there is relatively little value in using it as a head
instruction. A second heuristic is to first try to pair
instructions that are close together in the original x86
code sequence. The rationale here is that these pairs are
more likely to be dependent instructions that need to be
scheduled for back-to-back execution in order to reduce
the program’s critical path. Consecutive or close pairs
also tend to be less problematic with regard to other
issues, e.g. register live ranges need to be extended less
in order to provide precise state recovery.

We concentrate on fusing algorithms that can be
performed as a single-pass scan in order to enable fast
dynamic translation. We consider two possibilities, one
that does a forward scan and one that does a backward

scan. After the construction of the data dependence
graph, a forward scan algorithm considers instructions
one-by-one as candidate tail instructions. That is, for
each potential tail, it looks backwards in the instruction
stream for a head. It does this by scanning from the
second instruction to the last instruction in the super-
block attempting to fuse each not-yet-fused instruction
with the nearest preceding, not-yet-fused single-cycle
instruction that produces one of its input operands. A
backward scan algorithm traverses from the second last
instruction to the first instruction, and considers each
instruction as a potential head of a pair. Each not-yet
fused single-cycle instruction is fused with the nearest
not-yet-fused consumer of its generated value. Note that
the direction of searching for a fusing candidate in these
algorithms is always opposite to the scan direction, and
we call this an anti-scan (direction) fusing heuristic.
The rationale for this will be seen in subsection 4.4.

Neither the forward nor the backward scan algo-
rithm in the dynamic binary translator is necessarily
optimal. However, we believe they are near-optimal,
and in cases we have manually inspected, they capture
well over 90% of those possible pairs.

To explore instruction-fusing algorithms further,
we also studied a more complex, iterative algorithm
that scans the superblock multiple times, beginning by
looking for pairs with fusing distance one, i.e. consecu-
tive pairs. It then looks for distance two pairs, distance
three pairs, etc. until all fusible instructions have been
fused or until the full superblock size has been reached.
Note that distances are measured with respect to loca-
tions in the original micro-operations cracked from the
x86 binary. Compared to the single-pass scan algo-
rithms, the iterative algorithm performs slightly better
but it has much more runtime overhead due to its multi-
ple scan passes.

N

Head

Tail

YX

Head

Tail

A

C

B

D

a b c

A

D

B

C

d

?

Figure 3: Dependence Cycle Detection

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 8

4.4. Dependence Cycle Detection

Although it was not mentioned above, certain data

dependence patterns inhibit code re-ordering during
fusion. For example, consider the case where a head
candidate for a given tail produces a value for both its
tail instruction and another instruction that separates
them in the original cracked code sequence. If the
instruction in the middle also produces an operand for
the tail (Figure 3a), then making the tail and head
consecutive instructions (as is done with fusing) must
break one of the dependences between the candidate
pair and the “middle” instruction. Note that in Figure 3,
the vertical position of each node shows its order in the
original sequence cracked from the x86 code. For ex-
ample, A precedes B; C precedes D and so on. Other
situations where data dependences can prevent fusing
involve cross dependence of two candidate pairs (Fig-
ures 3b and 3c). However, analysis of these cases is not
as straightforward as in figure 3a. Thus, we need an
algorithm to avoid breaking data dependences in the
data dependence graph.

A property of the anti-scan fusing heuristic is that it
assures that the pairing shown in Figure 3b does not
occur. In the case shown in Figures 3b and 3c, the algo-
rithm will first consider pairing C with B rather than D
with B, because B is the nearest operand producer for
C. Consequently, the only pairing considered is the one
shown in Fig 3c.

Now, there is an advantage to reducing cross de-
pendences to the case in Figure 3c versus the case in
Figure 3b. That is, while considering candidate instruc-
tions for pairing, we only need to consider instructions
between the candidate head and tail for potential de-
pendence cycles. Note that according to the anti-scan
fusing heuristic, B and C are paired first for either the
forward or backward scan method before A and D are
considered. In contrast, one has to analyze dependent
instructions either before the head or after the tail if the
case shown in Figure 3b can occur.

The general case for detecting dependence cycles,
of which Figure 3a and 3c are special cases, is modeled
in Figure 3d. Under the anti-scan fusing heuristic, the
data dependence cycle detection algorithm only needs
to consider nodes between the candidate head and tail
when looking for potential cycles (which inhibit fus-
ing).

5. Evaluation

The experimental infrastructure is a full system x86

virtual machine, x86vm, we are currently developing. It

consists of three major components: (1) An x86 inter-
preter/functional simulator extracted from open source
BOCHS 2.0.2 [21]; (2) A dynamic binary translator that
cracks x86 instructions into RISC-like micro-operations
and optimizes them as described in the previous section;
(3) A microarchitecture simulator. We present program
characterization and dynamic binary translation results
with SPEC2000 integer benchmarks. Benchmark binaries
are generated by Intel C/C++ v7.1 compiler with –O3
SPEC2000 base optimization options (Binaries generated
by GCC show similar results). Note that due to the lower
precision of floating-point instructions (64-bits instead of
80-bits as in IA-32), simulation of some integer bench-
marks (175.vpr, 252.eon, 300.twolf) does not generate
exactly the same results as Intel processors.

Preliminary profiling data indicate that overhead for
our dynamic binary translator is about one to two micro-
seconds per x86 instruction translated on a 1.80GHz
Pentium 4 desktop. However, this version of the dynamic
binary translator is written in C++ for readability and
flexibility rather than for performance. Substantial per-
formance improvement is anticipated for a product
dynamic binary translator, for example, by merging some
passes described in subsection 4.2 and by coding it in
highly optimized native assembly.

5.1. Superblock Size

0

5

10

15

20

25

30

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

Av
er

ag
e

D
yn

am
ic

 S
up

er
bl

o
ck

 S
iz

e
in

 x
86

 In
st

ru
ct

io
ns

x86i/sb x86i/sb-string

Figure 4 Dynamic Superblock Size

First, we give some basic results regarding super-

block size. Although not strictly related to the main topic
of the paper, these are important for assuring good per-
formance in a code cache implementation. In Figure 4,
the left bars show the average number of x86 instructions
per dynamic superblock if x86 repetitive string instruc-
tions are not treated as separate superblocks. The right
bars show superblock size if they are treated as separate
superblocks. On average, about 15 x86-instruction-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 9

equivalent operations are executed per superblock. The
separate superblocks for string instructions bring down
the average number, but they do not break the require-
ment that the first instruction in the superblock is the
only entry point. A better solution might embed the
string loops inside an outer superblock and perform no
dependence analysis across string loops.

5.2. Immediate Conversion

As discussed in Section 4, we exploit long immedi-

ate value conversion to reduce instruction count. There
are two types of immediate values in x86 instructions,
immediate operands and displacements for address cal-
culation. Because program code and data sections are
usually clustered together, displacement values are
more amenable to our long immediate conversion algo-
rithm. As shown in Figure 5. More than half of the long
displacements are successfully converted. As men-
tioned before, about 10% of x86 addresses are
generated from absolute addresses embedded in x86
instructions, so this conversion notably reduces the
code expansion associated with cracking x86 instruc-
tions into our fused instruction set. On the other hand,
long immediate operands are in general much harder to
convert. Fewer than 10% can be converted, which re-
duces the aggregate conversion rate for all long
immediate values to less than 40%.

The number of temporary registers needed for
holding long immediate values is moderate. In most
benchmark programs, 4 or 5 registers will be sufficient
to handle more than 99% (y-axis in Figure 6) of the
dynamic superblocks. Only in some rare cases, e.g.
186.crafty, 8 or more registers are actually needed as
shown in Figure 6.

0

10

20

30

40

50

60

70

80

90

100

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

Av
er

ag
e

C
on

ve
rs

io
n

P
er

ce
nt

ag
e

Displacement Long Immd ALL

 Figure 5 Percent Long Immediate Values Converted

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

Number of Registers

P
er

ce
nt

ag
e

of
 D

yn
am

ic
 S

u
pe

rb
lo

ck
s

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf

Figure 6 Number of Registers Required for Holding

Long Immediate Values

5.3. Instruction Density

An ISA with good coding density can reduce instruc-
tion fetch bandwidth and improve I-cache performance. In
this experiment, we assume an unbounded code cache to
exclude replacement, and then compare the total transla-
tion size. Results are shown in Figure 7. The first bar for
each benchmark is the normalized code size for original
x86 code organized into the same superblocks as used
during translation. All the bars of each set are normalized
with respect to the first one. The second bar shows the
total code size for the proposed 16/32-bit fused ISA. On
average, the translated benchmarks consume about 33%
more space than the x86 code. On the other hand, if a
fixed-length (32-bits) conventional RISC-style ISA is
used (the fourth bar), the expansion is from 60% to over
100%. If the 16/32-bit instruction set is used, but with
alignment of 32-bit instructions to 32-bit instruction word
boundaries (with no-op padding when needed), about 9%
additional storage is required as shown by the third set of
bars in Figure 7.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

R
el

at
iv

e
C

od
e

S
iz

e

x86 VarLen VL-align Naïve

Figure 7 Static Translation Size Comparison

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ars
er

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

Av
er

ag
e

D
yn

am
ic

 S
ch

ed
ul

in
g

D
en

si
ty

RISC-ops Fused-ops

Figure 8 Dynamic Scheduling Density

We define the dynamic scheduling density of an

ISA as the average number of RISC-like operations
handled by each scheduling window slot. We compare
dynamic scheduling density between x86 code cracked
into RISC micro-operations and code using the fused
ISA (which essentially fuses the same RISC micro-
ops). Because most x86 superscalar processors allocate
one scheduling window slot for each RISC operation,
the x86/RISC model has a dynamic scheduling density
of 1.0 by definition. With the fused ISA, each schedul-
ing slot handles on average 1.4 ~ 1.5 RISC operations
(Figure 8). Hence, one could potentially reduce the
number of scheduling slots by about 30% and achieve
the same instruction level parallelism as with a conven-
tional x86 implementation (verification of this awaits
future micro architecture simulation).

5.4. Fusing Heuristics

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf

Percentage of Candidate Pairs

fusion B-lost C-lost

Figure 9 Instruction Fusing Profile

We now characterize x86 binary fusing properties
and evaluate the effectiveness of the fusing heuristics. In
this experiment, we name two instructions as a candidate
pair, if: (1) neither of them has been fused with other in-
structions; (2) there is dependence between them; and (3)
the head is a single-cycle instruction. After a candidate
pair is found, it must pass two main fusing criteria before
it is actually fused. The fusing criteria are 1) whether
there is a conditional branch between the head and the
tail, 2) whether there is a dependence cycle in the data
dependence graph.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf

Percentage of Fused Pairs

1 2 3 4 5 6 7

Figure 10 Head/Tail distance distribution

As shown in Figure 9, over 90% of the candidate

pairs found in the data dependence graph are successfully
fused. The major reason for pairs failing to fuse is that
they are separated by conditional branches. These are the
B-lost segments in Figure 9, and they amount to less than
10% of the candidate pairs. The pairs failing to fuse due
to cycles in data dependence graph (C-lost in Figure 9)
are negligible. Figure 10 shows the distance distribution
of the head and tail in terms of the original micro-
operation sequence cracked from the x86 binary. Here the
single-pass forward scan algorithm is used. More than
80% of the fused pairs are consecutive micro-operations
in the original sequence. Slightly more pairs are consecu-
tive if the iterative pairing algorithm is used. Although it
is not shown, the forward scan algorithm performs
slightly better (~1% in terms of fused pairs) than the
backward scan.

5.5. Code Reorganization

More than half of the fused instructions are com-

posed of two micro-operations from different original x86

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 11

instructions (X-fuse bars in Figure 11). This implies
that instruction fusing reorganizes the executable binary
for the underlying co-designed hardware, rather than
performing a simple reverse of the initial x86 cracking.
Figure 11 also shows that, on average, more than 60%
of paired instructions are single-single cycle pairs (S-
fuse bars). As one may infer, our data shows that for all
of the instructions translated and placed into the code
cache, about 65% of them are paired together for allo-
cation as a single entry for the scheduling logic. Among
those non-fused instructions, memory access instruc-
tions and branches take nearly 80% as shown in figure
12. ALU operations are 23%. As there are about 35%
non-fused instructions in the code cache, this implies
that single-cycle non-fused ALU instructions make up
about 8% of instructions. This tends to back up our
earlier assertion that single cycle non-fused ALU
instructions will cause relatively little IPC loss when
scheduling logic is pipelined.

0

10

20

30

40

50

60

70

80

90

100

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ar
se

r

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

Pe
rc

en
ta

ge
 o

f F
us

ed
 P

ai
rs

X-fuse S-fuse

Figure 11 Fused Instruction Profile

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf

Average

Percentage of None Fused Instructions

LD ST BR ALU

Figure 12 Non-fused Instruction Profile

5.6. Numbers of Source Operands

Finally, we consider the matter of the number of reg-

ister specifiers in a scheduling window slot. As was
noted earlier, in theory, pairing instructions together may
require scheduling slots with twice as many source regis-
ter specifiers than a conventional scheduling window slot.
However, Figure 13 shows that almost all fused instruc-
tion pairs have three or fewer input register specifiers.
About 95% of them have two or fewer input register
specifiers. Thus, instruction fusing does not necessarily
complicate the design of the instruction-scheduling win-
dow; a window slot with two source register specifiers is
probably sufficient.

84

86

88

90

92

94

96

98

100

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

P
er

ce
nt

ag
e

of
 F

us
ed

 P
ai

rs

2-src 3-src

Figure 13 Number of Source Operands for Fused pairs

6. Conclusions and Future Research

The results presented here indicate that using dy-
namic binary translation is a good way to perform
instruction fusing, especially for implementing the x86
instruction set. With regard to the fused instruction set,
we conclude that (1) although there is some code expan-
sion, we feel that it is reasonable, and is significantly less
than if translation were to a conventional fixed-length
RISC ISA. (2) There is a high degree of fusing, which
allows each scheduling slot to handle an average of nearly
1.5 RISC operations (compared with one RISC operation
in a conventional design that uses hardware cracking). (3)
There are relatively few single cycle ALU instructions
that are not fused, which indicates that pipelining the
scheduling logic will not be especially detrimental to per-
formance (i.e. instructions per cycle). And, (4) the
individual scheduling window slots do not require more
than two source register specifiers (although a third speci-
fier will help in a small percentage of cases). Our

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 12

experiments also verified the effectiveness of the algo-
rithms developed for the dynamic binary translator. We
found that they are both simple (fast) and effective.

 With the binary translator in hand, we plan to
complete the study of the proposed co-designed VM
implementation of the x86 instruction set. The design of
the microarchitecture will be completed, and a simula-
tor will be coupled with the binary translator so that the
complete VM system can be evaluated. The objective is
to verify that the performance potential we have identi-
fied in this paper can, in fact, be achieved.

Acknowledgements

We thank Ilhyun Kim, Ho-Seop Kim and Jason

Cantin for many helpful discussions and feedback.
Comments from anonymous reviewers were also very
much appreciated. This work is being supported by
SRC grant 2001-HJ-902, NSF grants EIA-0071924 and
CCR-0311361, Intel and IBM.

References

1. Jared Stark, Mary Brown and Yale Patt, “On Pipelining
Dynamic Instruction Scheduling Logic”, Proc. of the
33rd Int’l Symp. on Microarchitecture, pp. 57-66, Dec.
2000.

2. Mary D. Brown, Jared Stark, and Yale N. Patt, “Select-
Free Instruction Scheduling logic”, Proc. of the 34th Int’l
Symp. on Microarchitecture, pp. 204-213, Dec. 2001.

3. Ilhyun Kim and Mikko H. Lipasti, “Macro-op Schedul-
ing: Relaxing Scheduling Loop Constraints”, Proc. of
the 36th Int’l Symp. on Microarchitecture, pp. 277-288,
Dec. 2003.

4. Ho-Seop Kim and James E. Smith, “An Instruction Set
and Microarchitecture for Instruction Level Distributed
Processing”, Proc. of the 29th Int’l Symp. on Computer
Architecture, pp. 71-82, May 2002.

5. Michael Bekerman, et al., “Early Load Address Resolu-
tion via Register Tracking”, Proc. of the 27th Int’l Symp.
of Computer Architecture, pp. 306-315, May 2000.

6. D. Ernst and T. M. Austin, “Efficient Dynamic Schedul-
ing Through Tag Elimination”, Proc. of the 29th Int’l
Symp. on Computer Architecture, pp. 37-46, May 2002.

7. Ilhyun Kim & Mikko H. Lipasti, “Half Price Architec-
ture”, Proc. of the 30th Int’l Symp. on Computer
Architecture, pp. 28-38, June 2003.

8. Ramon Canal and Antonio Gonzalez, “A Low-
complexity Issue Logic”, Proc. of the 14th Int’l Conf. on
Supercomputing, pp 327-335, June 2000.

9. Ramon Canal and Antonio Gonzalez, “Reducing the Com-
plexity of the Issue Logic”, Proc. of the 15th Int’l Conf. on
Supercomputing, pp. 312-320, June 2001.

10. Pierre Michaud, André Seznec, “Data-Flow Prescheduling
for Large Instruction Windows in Out-of-Order Proces-
sors”, Proc. of the 7th Int’l Symp. on High Performance
Computer Architecture, pp. 27-36, Jan. 2001.

11. L. Gwennap, “Intel P6 Uses Decoupled Superscalar
Design”, Micro processor Report, Vol. 9 No. 2, Feb. 1995.

12. Simcha Gochamn et al., “The Intel Pentium M Processor:
Microarchitecture and Performance”, Intel Technology
Journal, vol7, issue 2, 2003.

13. Glenn Hinton et al., “The Microarchitecture of the Pentium
4 Processor”, Intel Technology Journal. Q1, 2001.

14. C. N. Keltcher, et al., “The AMD Opteron Processor for
Multiprocessor Servers“ IEEE MICRO, Mar.-Apr. 2003,
pp. 66 -76.

15. J. M. Tendler, et al., “POWER 4 System Microarchitec-
ture”, IBM Journal of Research and Development, Vol. 46.
No. 1, 2002.

16. Unpublished document, “CRAY-2 Central Processor”,
circa 1979, http://www.ece.wisc.edu/~jes/papers/cray2a.pdf

17. A. Klaiber, “The Technology Behind Crusoe Processors”,
Transmeta Technical Brief, 2000.

18. K. Ebcioglu et al., “Dynamic Binary Translation and Opti-
mization”, IEEE Transactions on Computers, Vol. 50, No.
6, pp. 529-548. June 2001.

19. Ho-Seop Kim and James E. Smith, “Dynamic Binary
Translation for Accumulator-Oriented Architectures”,
Proc. of the 1st Int’l Symp. on Code Generation and Op-
tomization, pp25-35, Mar. 2003.

20. Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia,
“Dynamo: A Transparent Dynamic Optimization System”,
Int’l Symp. on Programming Language Design and Imple-
mentation, pp. 1-12, Jun. 2000.

21. “BOCHS: The open source IA-32 Emulation Project”,
http://bochs.sourceforge.net

22. Bich C. Le, “An Out-of-Order Execution Technique for
Runtime Binary Translators”, Proc. of the 8th Int’l Symp.
on Architecture Support for Programming Languages and
Operating System”, pp. 151-158, Oct. 1998.

23. Wen-mei W. Hwu, Scott A. Mahlke, William Y. Chen,
“The Superblock: An Effective Technique for VLIW and
Superscalar Compilation”, The Journal of Supercomputing,
7(1-2) pp. 229-248, 1993.

24. S. Vassiliadis, J. Phillips, and B. Blaner, “Interlock Col-
lapsing ALUs”, IEEE Transactions on Computers, July
1993, pp. 825-839.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

