
Targeted Path Profiling: Lower Overhead Path Profiling for Staged Dynamic
Optimization Systems

Rahul Joshi, Michael D. Bond�, and Craig Zilles

Dept. of Computer Science, University of Illinois at Urbana-Champaign
� Dept. of Computer Sciences, University of Texas at Austin

E-mail: �rujoshi, zilles�@cs.uiuc.edu, mikebond@cs.utexas.edu

Abstract

In this paper, we present a technique for reducing the
overhead of collecting path profiles in the context of a dy-
namic optimizer. The key idea to our approach, called Tar-
geted Path Profiling (TPP), is to use an edge profile to sim-
plify the collection of a path profile. This notion of profile-
guided profiling is a natural fit for dynamic optimizers,
which typically optimize the code in a series of stages.

TPP is an extension to the Ball-Larus Efficient Path Pro-
filing algorithm. Its increased efficiency comes from two
sources: (i) reducing the number of potential paths by not
enumerating paths with cold edges, allowing array accesses
to be substituted for more expensive hash table lookups, and
(ii) not instrumenting regions where paths can be unam-
biguously derived from an edge profile. Our results suggest
that on average the overhead of profile collection can be re-
duced by half (SPEC95) to almost two-thirds (SPEC2000)
relative to the Ball-Larus algorithm with minimal impact on
the information collected.

1. Introduction

Dynamic optimization systems such as Crusoe
CMS [16], Dynamo [6], and Jalapeño [4] collect data
about a program as it runs and use this data to improve per-
formance. Typically, such optimizers optimize the code
in a series of stages. Each stage represents a differ-
ent trade-off between expended effort during optimiza-
tion and the performance of the resulting code. In addition,
some stages may be responsible for collecting profile infor-
mation about the executable.

Control flow profiles are perhaps the most important
form of profile collected. They allow the optimizer to fo-
cus its time on frequently executed (i.e., “hot”) portions
of the program and apply transformations that benefit the
hot portions at the expense of “cold” (i.e., less frequently
executed) portions of the program. Many optimizers col-
lect control flow “point” profiles (e.g., block or edge pro-

files) because they can be collected with minimal (0.5 to
3%) overhead via sampling [2, 24] or with hardware sup-
port [10, 11, 12, 14].

In this paper, we are concerned with the identification of
higher-level control flow patterns in the form of hot paths.
Knowledge of these frequently-executed sequences of ba-
sic blocks can be used to drive powerful optimizations (e.g.,
superblock formation [15] and path-profile guided code op-
timizations [13]) that would typically be found in the fi-
nal stages of dynamic optimizers. Ball, et al. showed that
hot paths could be derived from edge profiles where there
were few unbiased branches (a process they call attribu-
tion of definite flow) [9]. They found that they could at-
tribute around 80%—76% for SPEC95 INT and 84% for
SPEC95 FP—of the program’s execution to acyclic paths.
While promising, their technique leaves a sizable fraction
of paths unaccounted for.

While a number of techniques have been proposed for
collecting path profiles [6, 8, 23], none are as efficient as
edge profiling. Whereas edge and block profiles—being
“point profiles”—track the frequencies of individual events,
path profiles require correlating the execution of multiple
events. The complexity of correlation profiles comes from
storing the profile in a manner which is space efficient and
can be quickly queried1. Even if path fragments are col-
lected in hardware (as can be done by the Pentium4 [20]), a
challenge remains in aggregating them into a profile.

Ball and Larus [8] proposed an instrumentation-based
path profiling algorithm that enables efficient collection and
storage of path profiles in two ways: (i) The program is log-
ically broken into independent acyclic regions that are pro-
filed independently, and (ii) a minimal numbering algorithm
is proposed that allows paths within these regions to be
identified with a single integer. While breaking a program

1 The MRET technique [6] sidesteps this challenge by collecting a sin-
gle trace. While statistically likely to find the hottest path, MRET
doesn’t provide the information about the path’s relative frequency
necessary to decide how aggressively to optimize the path. As a re-
sult, Dynamo is overly aggressive in programs with many unbiased
branches, thrashes the code cache, and bails out [6].

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

into acyclic regions prevents identification of control flow
correlations that cross region boundaries, Ball and Larus en-
sure that all overlapping paths begin and end at the same
place, enabling the paths to be easily compared and aggre-
gated. By assigning each path a unique number, this aggre-
gation can be performed by simply incrementing a counter
associated with the path’s number.

For the SPEC95 suite of programs, Ball and Larus found
that Path Profiler (PP, a tool based on their efficient algo-
rithm) added 31% overhead on average, with overheads as
high as 97% for gcc [8]. While this instrumentation would
only need to be run temporarily (e.g., during one stage of
optimization) to identify hot paths, a less expensive means
of path profiling remains desirable. Sampling techniques for
instrumentation (e.g., the Arnold-Ryder framework [5] and
dynamic instrumentation [19, 22]) can be used to reduce
the overhead rate, but do so by extending the time it takes
to collect a given number of samples.

As we will show in Section 2.2, a sizable fraction of
the overhead of PP can be attributed to either (i) paths that
can be identified unambiguously from an edge profile or (ii)
path counters maintained in a hash table. Because the num-
ber of potential paths can grow exponentially with the size
of the acyclic regions, PP resorts to using hash tables to
count paths when the number of potential paths makes al-
locating an array of counters impractical. This space-time
trade-off is feasible because in practice only a small frac-
tion of potential paths are exercised by programs, but the
hashed regions consume a disproportionate amount of exe-
cution time.

In an attempt to reduce the overhead of collecting each
path sample, we propose a variant of the Ball-Larus algo-
rithm that we call Targeted Path Profiling (TPP), which is
especially suited for staged dynamic optimizers. In such an
optimizer, generally a rudimentary edge profile is available
by the time that the optimizer decides that a routine is suf-
ficiently hot to warrant collection of a path profile for path-
based optimizations. TPP uses this edge profile to more effi-
ciently collect the path profile. TPP is an example of a more
general notion of profile-guided profiling techniques, which
naturally fit in the context of dynamic optimizers, as dis-
cussed in Section 3.

Specifically, TPP uses the edge profile to (i) avoid instru-
menting regions where the edge profile is sufficient to un-
ambiguously identify paths and (ii) narrow the set of poten-
tial paths, allowing regions to be converted from using hash
tables to using (faster) arrays of counters. Many potential
paths (often as many as 99.99% of them) can be identified
as definitely cold from an edge profile because the execu-
tion frequency of a path cannot exceed the frequency of any
of its component edges. Removing these paths from con-
sideration means that their execution frequencies will not
be counted, but such information for cold paths is of little
use to an optimizer. To ensure that executions of these cold

paths do not incorrectly increment a valid path’s counter,
our instrumentation poisons the path counter register by set-
ting upper bits not set by any valid path. Using the poison
bits, our instrumentation can aggregate samples of all cold
paths to a single counter, allowing TPP to track the fraction
of paths that are not being counted. If this fraction is too
high, a dynamic optimizer is free to re-instrument the re-
gion using a more recent edge profile. TPP’s techniques are
described in Section 4 and the instrumentation itself is de-
scribed in Appendix A.

In an effort to isolate the performance-accuracy trade-
off, our evaluation of TPP (Section 5) was not done in
the context of a dynamic optimizer, because we felt the
results might be clouded by the complexity of such sys-
tems. Instead, we compare to the Ball-Larus implementa-
tion of their algorithm, which is a highly-tuned and well-
understood system, on full benchmark runs. We find that,
when the edge profile is not unrepresentative of the profil-
ing run, TPP has overhead that is half (SPEC95) or two-
thirds (SPEC2000) that of the Ball-Larus algorithm, with
minimal impact on the information collected (attribution of
definite flow exceeding 98%).

While this reduction in overhead does come at the cost
of some additional analysis time, we feel that this is a
good trade-off given the trends in semiconductor technol-
ogy. While it is increasingly difficult to improve the per-
formance of a sequential thread, adding additional hard-
ware contexts to support thread-level parallelism is straight-
forward. Targeted path profiling enables moving work out
of the application thread and into the run-time optimizer,
which can potentially execute in parallel with the applica-
tion.

2. Ball-Larus Path Profiling

This section explains briefly the Ball-Larus path profil-
ing algorithm and explores its major sources of overhead.
More details can be found in [8].

2.1. Algorithm and Definitions

One of the important contributions of the algorithm is ef-
ficient enumeration of all acyclic paths in the control flow
graph (CFG). The basic algorithm assigns an integer value
to each edge in a directed acyclic graph (DAG) such that
(i) the sum of the values of the edges on a path is unique
for each path in the DAG, and (ii) the numbering of paths
induced by the edge values is minimal (i.e., if there are �
acyclic paths, then the path numbers range from � to���).
Once these edge values are computed, the algorithm uses
the efficient event counting algorithm [7] to place instru-
mentation code on selected edges so that at the EXIT of the
DAG, the path number is available in a register, which Ball
and Larus call the path register. The instrumentation at the
EXIT node then counts the path.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

1

2

3 4

5

6

1

2

3 4

5

6

1

2

3 4

5

6

0

2

0

0

0

0

4

1

1

2

3 4

5

6

r=-4

r+=7 r+=5

count[r-1]++

count[r]++
r=0

b) c) d)a)

Figure 1. The Ball-Larus path profiling algorithm “breaks” back
edges to create a directed acyclic graph (DAG): a) original con-
trol flow graph (CFG), b) CFG converted to a DAG, c) DAG with
edge value assignments, d) CFG with final instrumentation.

A

I

B

C D

E

F

G

H

J

AI: AIJ
CE: ABCEHJ
DE: ABDEHJ
FH: ABDFHJ
FG: ABDFGHJ

Defining edge: Obvious path

Figure 2. Example CFG where all paths are obvious. For each
path in this routine, there is at least one defining edge (an edge
included in only one path). This example is the routine sim-
plify unary operation taken from gcc, after the cold paths
have been removed.

Ball and Larus extend this basic algorithm to work for ar-
bitrary CFGs with back edges. Each back edge is converted
into two dummy edges: an edge from the ENTRY to the tar-
get of the back edge (which we call entry dummy edge) and
the other from the source of the back edge to the EXIT (exit
dummy edge). In effect, the target of each back edge starts a
new acyclic path, and the source terminates an acyclic path.
This process of “breaking” a back edge is shown in Fig-
ures 1a and 1b.

The Ball-Larus algorithm instrmuents each back edge so
that it increments a path counter and resets the path register
to zero. Therefore, the Ball-Larus algorithm counts acyclic
paths that start at the ENTRY basic block or the target of a
back edge and end at the EXIT basic block or the source of
a back edge. When the number of enumerated paths grows
too large, the algorithm selects an edge for truncation; en-
try and exit dummy edges are substituted for the truncated
edge, reducing the number of paths through the DAG. Fig-
ure 1c shows the assignments of values to edges; the sum of
the edge weights is the path number. Figure 1d shows the fi-
nal instrumentation.

Bench Overhead DynPath Hash
mark PP Array Hashing Hashed Cost
compress 23.7% 23.8% 0.0% 0.0% -
gcc 95.6% 16.4% 77.6% 61.3% 3.0
go 67.6% 14.3% 47.2% 34.9% 6.2
ijpeg 12.2% 11.6% 0.4% 2.2% -
li 18.3% 19.2% 1.8% 0.1% -
m88ksim 44.0% 33.4% 5.8% 4.1% 4.1
perl 34.2% 3.6% 28.3% 49.4% 8.0
vortex 34.6% 6.8% 33.0% 40.2% 7.2
INT Avg: 41.3% 16.1% 24.3% 24.0% 5.7

apsi 8.6% 7.6% 1.2% 4.0% 3.8
applu 4.8% 4.6% 0.0% 0.7% -
hydro2d 29.7% 2.8% 25.4% 66.3% 4.6
mgrid 0.8% 0.8% 0.1% 0.0% -
su2cor 7.3% 2.6% 4.6% 26.9% 4.8
tomcatv 12.2% 0.0% 12.6% � ����% -
turb3d 20.2% 20.7% 0.3% � ���% -
FP Avg: 11.9% 5.6% 6.3% 28.3% 4.4

Average: 27.6% 11.2% 15.9% 26.0% 5.2

Table 1. Comparison of hash calls vs. array counter updates in
PP. The Overhead columns shows the percentage increase in ex-
ecution time due to profiling for the original PP (PP), for only rou-
tines with index- and address-based counters instrumented (Array),
and for only routines using hash table-based counters instrumented
(Hashing). The second to last column shows the fraction of dynamic
paths counted that were in routines that used hash tables. Hash cost
is the overhead per dynamic path increment of a hash-table based
routine relative to a routine that uses arrays of counters. Data shown
for the working subset of SPEC95.

2.2. Overhead

Ball and Larus found that their path profiling technique
has an average overhead of 31% for the SPEC95 bench-
marks. The overhead is substantially higher for the integer
programs (average 45%) than it is for the floating point (FP)
programs (average 20%), and it is as high as 97% for gcc
and 73% for perl, two of the benchmarks most represen-
tative of modern programs.

Many of the programs with above average overheads
record a sizable fraction of their paths using hash tables.
PP relies on hash tables when the number of possible paths
would make it infeasible to statically allocate an array of
counters for the routine. While updating an array-based
counter can be done with a load-add-store instruction se-
quence, the hash table-based counters require a function call
that involves control flow and multiple memory operations
to find the appropriate hash bucket to update. As shown in
Table 1, we find that the overhead of counting a path in
a hash table-based routine is a factor of 5.2 greater than
in non-hashed routines. Thus, overhead can be reduced if
the number of necessary counters can be brought below the
hashing threshold.

Overhead can likewise be reduced by reducing the num-
ber of counter increments. We can avoid counting paths if
the path frequencies can be computed directly from the edge

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

0.0
0.2
0.4
0.6
0.8
1.0

ob
vi

ou
s

pa
th

s
(%

)

com gcc go ijp li m88 per vor

0.0
0.2
0.4
0.6
0.8
1.0

ob
vi

ou
s

pa
th

s
(%

)

app aps hyd mgr su2 tom tur

Figure 3. Fraction of total path counts due to obvious paths.
Data collected with cold path and loop disconnection thresholds of
5% (see Section 5). If instrumentation for obvious paths can be re-
moved, we would expect overhead to go down around this percent-
age. Data shown for the working subset of SPEC95.

profile. For example, Figure 2 shows a routine where ev-
ery path includes at least one edge (the defining edge) that
is part of only that path, which we call an obvious path. In-
strumenting this routine provides no additional information.
As shown in Figure 3, around 25% (SPEC95 INT) and 50%
(SPEC95 FP) of dynamic path counter increments are in
code regions where all path frequencies could be obtained
directly from the edge profile. By removing the instrumen-
tation in these regions, we expect overhead to drop roughly
proportionately to these frequencies.

3. TPP in a Staged Dynamic Optimizer

While dynamic optimization is an attractive technique
because it can exploit run-time information, actually per-
forming the optimization requires execution resources. As
a result, dynamic optimizers have been designed to balance
this resource utilization with the expected benefit of opti-
mization. To this end many dynamic optimizers are orga-
nized as a series of stages, each requiring a larger invest-
ment of resources for optimization and resulting in a higher
degree of optimization. Typically, an optimization stage is
invoked when the system has seen a fragment of code exe-
cute a sufficient number of times that it can expect a suffi-
cient return to justify a further investment in optimization.

To achieve greater levels of optimization, later stages
make greater investments in analysis to enable additional
optimizations; for example, Jalapeño [4] does mostly lo-
cal optimizations in its first stage, global optimizations in
the second stage, and builds static single assignment (SSA)
form in its third stage. Likewise, systems can use more ex-
tensive profile information in each stage, as more aggres-
sive optimizations can better exploit this information. For
example, an early stage may try to minimize taken branches

Stage 1 Stage 2Stage 0

edge
profile

path
profile

HW edge
profiler

global opt's,
superblock
formation

Local opt's,
code layout

path profiling
instrumentation

Native or
JIT'ed code

Figure 4. Staged optimization enables profile-directed profil-
ing. A staged optimizer that first collects edge profiles can use that
information to optimize the collection of a path profile.

through code layout, for which an edge profile is suffi-
cient, while a later stage may perform superblock forma-
tion, where a path profile is desirable. Such a staging is
shown in Figure 4.

Staging the profiling (as well as the optimization) seems
natural because there will be a cost to collect (and to store)
the profile, so that cost should only be born for code frag-
ments that will reach the higher levels of optimization. For
instrumentation-based path profiling, instrumentation can
be added in an early stage (e.g., stage 1 in Figure 4) for
use in a later stage (e.g., stage 2).

If the instrumentation is added after the dynamic op-
timizer has determined that a code region is hot, a rudi-
mentary edge profile may be available for the code re-
gion. This paper shows how this edge profile can be used
to reduce the overhead from executing instrumented code.
While this reduction of overhead potentially comes at a cost
of additional analysis and/or instrumentation time, it is im-
portant to note that those tasks can be executed in paral-
lel with the application code, so they may minimally con-
tribute to execution time on a system with under-utilized
thread execution resources. We expect current trends to-
ward multi-threading and chip multiprocessing to provide
thread-parallel resources beyond what most workloads can
exploit.

4. Techniques

In this paper, we present two orthogonal, but synergis-
tic, techniques for reducing the overhead of Ball-Larus-
style path profiling instrumentation. These techniques at-
tack the two sources of overhead discussed in Section 2.2.
The first technique (discussed in Section 4.1) reduces the
number of possible paths enumerated by not counting sus-
pected cold paths; in some routines, the number of possi-
ble paths is sufficiently low that hash table-based counters
can be avoided. The second technique (discussed in Sec-
tion 4.2) avoids counting paths whose frequencies can be
derived directly from an edge profile.

4.1. Cold Path Elimination

As previously noted in Section 2.2, PP resorts to hash
table-based counters to conserve memory for routines with

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

many potential paths. A large number of potential paths
typically results from code with stacked conditionals, like
those shown in Figure 5a. In this structure, the number of
paths grows exponentially with the height of the stack; in
some routines, the number of acyclic paths exceeds ���.

In practice, though, only a very small fraction (i.e., much
less than one percent) of the potential paths are ever exe-
cuted. For optimization, we are only concerned with mea-
suring the frequency of frequently executed (or hot) paths.
Unexecuted paths need not be allocated a counter, and we
can do without tracking cold paths as well. Although we
cannot, in general, know a priori which will be the hot
paths, an edge profile can accurately identify cold paths
in a program. Specifically, if a path � consists of edges
��� ��� � � � � ��, then the number of times that path � is exe-
cuted (��� �) is:

��� � � ���
�����

�����

Quantitatively, the execution count of a path cannot exceed
the execution count of any edge on that path. Qualitatively,
if any edge on the path is “cold,” the entire path is cold.
Thus, we identify cold paths by first identifying cold edges
and then identifying a path as cold if any of the edges on it is
cold. We discuss our criterion for cold edges below, in Sec-
tion 4.1.1.

By logically removing cold edges from the CFG, we
eliminate any (cold) paths that include them. After cold
edges have been removed, the Ball-Larus algorithm is used
to enumerate paths in the resulting graph. For the example
in Figure 5, if two of the branches are highly biased, there
are only four potential “hot” paths for the routine; in gen-
eral, each cold branch edge removed can eliminate as many
as half of the potential paths. We present a few subtleties in
the algorithm related to loop back edges in Section 4.1.2.

Since we have not considered the cold edges in the above
analysis, execution paths through cold edges do not com-
pute a meaningful value in the path register. The computed
value may alias to another path’s value or be outside the
range of the path counter array. To preserve the purity of our
counters (as well as the rest of the address space), we mark
the path register’s value as poisoned on any transition into
a cold region of the CFG. The poisoning is implemented by
setting the upper two bits of the path register—doable with a
single SPARC instruction (see Appendix A.2)—effectively
making the path value a large negative number. Since no
valid path will set these bits—PP truncates paths when the
number of potential paths exceeds ��� ���� ���—poisoned
paths will contain values sufficiently far from valid paths
that we can trivially distinguish between the two.

Having distinguished the poisoned counter values, we
must consider what to do when one is encountered. Two al-
ternatives worth considering are:

1. Incrementing a cold counter to track the frequency of
all cold paths in the code region.

16

8 8

8

4 4

4

2 2

2

1 1

1

exit

entry

4

2 2

2

2

2

2

2

1 1

1

exit

entry

cold
edges

r+=2

poison

poison

r+=1

record r

b) c)a)
r = 0

Figure 5. Avoiding a large number of potential paths, by not
enumerating likely cold paths. a) Stacked conditionals yield a
number of paths exponential with the height of the stack; each block
is labeled with the number of paths reachable from that point on. b)
In practice, many edges are cold; each cold edge ignored can cut
the potential number of paths in half. c) TPP instrumented code;
cold edges are instrumented to “poison” the path register, so that
paths through cold edges are not counted incorrectly.

2. Ignoring poisoned path counters.

The first alternative is appealing, as it can provide feed-
back to the dynamic optimizer on the quality of the result-
ing path profile. For example, if a path that was cold before
instrumentation later becomes hot, the cold counter will
have a nontrivial number of counts. Based on the number
of cold counts, the optimizer can consider re-instrumenting
the code region to collect a better path profile. The second
alternative would be worth considering if it significantly re-
duced overhead, but in our experiments execution time de-
creases by only 1% (i.e., average overhead decreases from
14% to 13% for SPEC95).

In either case, in code where the path register can po-
tentially be poisoned, the counter increment instrumenta-
tion must check for poisoned path registers. When a cold
counter is maintained, it should be incremented on a poi-
soned path rather than the counter indicated by the path reg-
ister. Thus, logically, the instrumentation at the end of a path
looks like:
if r < 0 // if path register poisoned

cold_counter++
else

count[r]++

This potential branching at the end of each acyclic path
can increase the runtime penalty of the instrumentation
code. In Appendix A, we demonstrate how this logic can
be implemented with a conditional move.

4.1.1. Cold Criterion Our algorithm is orthogonal to the
criterion for deciding whether an edge is cold. In our results
in Section 5, we consider a criterion based on branch bi-
ases. This local criterion removes edges where the ratio of
the edge’s execution frequency to that of its source block is
below a supplied threshold.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Some edges in the CFG that are not cold according to the
criterion may be cold transitively. Specifically, any block or
edge is considered cold if there is no hot path from EN-
TRY to EXIT through it. All cold blocks and edges are log-
ically removed from the CFG. Instrumentation for poison-
ing the path register is introduced whenever a hot block is
the source of a cold edge.

4.1.2. Handling Back Edges Back edges need special
consideration in the Ball-Larus algorithm because they are
not part of any acyclic path. In the original algorithm, back
edges are instrumented to increment the counter associated
with the current path register value and reset the path regis-
ter value to �. This remains unchanged for hot back edges.
In this section, we discuss how cold edges (i) increment
path counters and (ii) reset the value of the path register.

When cold back edges are logically removed from the
CFG, no entry and exit dummy edges are inserted. As a re-
sult, the path numbering algorithm will not assign a num-
ber to paths that terminate at the back edge. Thus, the instru-
mentation on cold back edges ignores the value of the path
register and always records an execution of a cold path2.

Similarly, if all back edges for a particular loop header
have been removed, then there will be no entry dummy edge
to the loop header. In this situation, all (cold) back edges for
the loop header must initialize the path register to a poi-
soned value, as no paths starting at the loop header will
have been enumerated (Figure 6a). If not all back edges are
cold or one of the entry edges was truncated, then an en-
try dummy edge exists, and all back edges (both hot and
cold) can reset the path register to zero (Figure 6b). Lastly,
if the whole loop body is cold, then the path register need
not be modified; we know that it will contain a poisoned
value upon execution of the back edge, and that is what we
want it to contain (Figure 6c).

4.2. Obvious Path Elimination

As was shown in Figure 2, the frequency of some paths
can be derived directly from an edge profile. We refer to
such paths as obvious paths. Formally, an obvious path is
a path that contains at least one edge that lies only on that
path. This edge is called the defining edge for that obvious
path, and the execution count of an obvious path is equal to
the execution count of its defining edge.

In regions where all paths are obvious (e.g., the routine
in Figure 2), no instrumentation is necessary. Eliminating
this instrumentation reduces overhead from both path regis-
ter updates and counter increments. While loops are respon-

2 With indirect branches, a block can potentially be the source of both a
cold back edge and a hot back edge of different loops. In such a situ-
ation, there is a dummy edge to exit from the block that was not elim-
inated, so there are valid paths that end at the block. Thus, all back
edges from the block can include the standard path recording instru-
mentation. We have not observed this situation in practice.

tail
r=on_cold_path r=on_cold_path

b) c)

a)

tail
r=0 r=0

tail

Figure 6. Instrumenting a cold back edge for reinitializing the
path register. a) Cold back edge poisoning path register. b) Cold
back edge resetting path register. c) Cold back edge not modifying
the path register. (Cold edges are shown as dashed arcs.)

sible for a large fraction of the path increments, they inhibit
elimination of obvious paths. In Section 4.2.1, we demon-
strate this problem and how cutting loops with high iteration
counts from the CFG enables them to be considered for ob-
vious path removal. In Section 4.2.2, we explain how TPP
detects obvious paths and show how it is possible to elimi-
nate some of the instrumentation from a routine when only
some of the paths are obvious; we also discuss how to re-
cover the complete path profile from what is collected by
TPP and an edge profiler.

4.2.1. Considering Loops for Obvious Path Elimination
Because of their relative execution frequency, loops con-
tribute the lion’s share of the increments to path counters
as well as the overhead. In many cases, the paths through
the loop body are obvious. For example, Figure 7a shows
a loop whose body consists of a single block; there is only
one path through the loop body, and we know it will be ex-
ecuted 100,100 times. There is little point to instrumenting
such a loop.

A difficulty arises because the Ball-Larus algorithm does
not consider the loop in isolation. After the back edge is re-
moved and the dummy edges are inserted (shown in Fig-
ure 7b), there are now four paths through the routine, and
none of them are obvious. The only benefit of this path pro-
filing instrumentation over an edge profile is that it indi-
cates how many times the routine executed exactly one it-
eration of the loop. That is, the case where the loop always
executes more than one iteration (Figure 7c) can be distin-
guished from the case where only one execution executes
more than one iteration (Figure 7d). While this information
could be used to drive optimization (e.g., peeling the first it-
eration3), the expected benefit is marginal when the average

3 The information necessary to decide whether peeling is worthwhile
can be collected by peeling the first iteration and collecting an edge
profile.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

A

B

C

100

100

exit

entry

100k

A

B

C

exit

entry

count
100

99,900
100
0

path
AB
B
BC
ABC

count
1

99,999
1
99

path
AB
B
BC
ABC

A

B

C

exit

entry

A

B

C

exit

entry
a) b)

c)

d)

e) f)

Figure 7. Cutting loops from the CFG to enable obvious path elimination. a) A single block loop with a high iteration count. b) This code
will not be considered obvious because there are two paths into and two paths out of block B; there are many path profiles that match this
edge profile. c) A matching path profile with many AB and BC paths. d) A matching path profile with many ABC paths. e) Dummy edges
from ENTRY and to EXIT are substituted for edges into and out of loop bodies. f) The back edge is removed resulting in a graph with three
obvious paths.

iteration count is high4.
The loss of information can be quantified via the average

length of the dynamic paths measured. When loops are sep-
arated from the rest of the CFG, some paths are truncated.
These truncated paths reduce the average path length rela-
tive to a profile where the loops are left in place. In prac-
tice, we’ve found the loss to be negligible: average path
length is reduced only 1.5% when loops with average it-
eration counts as little as 10 are detached. When the thresh-
old is raised to 100, the effect is imperceptible.

If this loss of information is deemed acceptable, the
CFG can be transformed to enable the detection of obvi-
ous paths. We truncate all the entry and exit edges of the
loop, replacing them with dummy edges, as explained in
Section 2.1. Figure 7e shows the example after this sub-
stitution for � � � and � � �. After dummy edges
are substituted for back edges (Figure 7f), there are three
non-overlapping paths from ENTRY to EXIT, so the rou-
tine consists of only obvious paths. The algorithm tracks
the relationship between the removed CFG edges and the
dummy edges to allow the correct attribution of edge counts
to paths.

In general, the code before, in, and after the loop (rep-
resented by blocks A, B, and C) could be any (acyclic)
code region. Since these regions are now independent, if
one of them is not entirely obvious, only it needs to be in-
strumented.

4.2.2. Obvious Path Detection and Elimination Algo-
rithm To find obvious paths in a DAG, we first find the set
of all defining edges (edges that lie on only one path). By

4 In the more general case, where there is control flow both above and
below the loop, the Ball-Larus path profile will expose path correla-
tions between the code before and after the loop, when the loop is ex-
ited after a single iteration. Again, when the average loop iteration
count is high, the expected benefit of this information is small.

definition, there is a single path from ENTRY to the defin-
ing edge and a single path to EXIT from it. Thus, to find
all defining edges, we find the set of blocks with a single
path from ENTRY (ENTRY�) and those with a single path
to EXIT (EXIT�); finding each set requires a single traver-
sal of the DAG. Edges with a source in ENTRY� and a tar-
get in EXIT� are defining edges.

Upon finding a defining edge and its obvious path, we
cannot immediately eliminate the instrumentation on its
edges, because it may be needed to record other (non-
obvious) paths. In fact, we only eliminate obvious paths
when all the paths reaching a recording point are obvi-
ous, because that allows the whole region to be left unin-
strumented, yielding a significant overhead reduction. For
this reason, eliminating instrumentation is a two-step pro-
cess: (i) elimination of unnecessary recording points and
(ii) elimination of unnecessary edge instrumentation.

A recording point is unnecessary if it is only reachable
by obvious paths. Thus we traverse the DAG from EN-
TRY to EXIT only using non-defining edges. Any recording
point not reached during this traversal is an obvious record-
ing point and can be eliminated using the algorithm shown
in Figure 8.

If there is no path from an edge to a non-obvious record-
ing point, then that edge does not need to be instrumented;
all paths through such an edge are obvious paths. The algo-
rithm for finding these edges is a reachability analysis simi-
lar to the previous one for finding obvious recording points,
except that we do a backward traversal starting at all the
non-obvious recording points. After the analysis completes,
we remove all the unreached edges from the DAG, elimi-
nating any instrumentation on them. In case all the record-
ing points in the DAG are found to be obvious, all paths
in the routine are obvious, and the routine need not be in-
strumented at all. In general, if only a part of the routine

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

EdgeSet FindObviousRecordingPoints(CFG �):
EdgeSet obvRecordPoints = pred(exit(�))
EdgeSet WS = non-defining successors of entry(�)
while WS not empty

edge � = WS.remove()
// recording point reached by a non-obvious path
if � � obvRecordPoints

remove � from obvRecordPoints
else

for each edge � = target(�)� �

if not IsDefining(�)
add � to WS

return obvRecordPoints

Figure 8. An ���� algorithm for finding obvious recording points.

is obvious, the above algorithm can eliminate instrumenta-
tion from just that part.

To reconstruct the complete path profile, the above algo-
rithm can be used again during profile analysis to find the
set of defining edges actually eliminated during instrumen-
tation. For each such defining edge, the (single) path con-
taining that edge is traced by tracing unique paths from EN-
TRY to its source and from its target to EXIT. The execu-
tion count of this path is set equal to the execution count of
its defining edge. Alternatively, the relationships between
defining edges and paths can be retained from the original
analysis.

4.3. Interaction between Obvious Path Elimina-
tion and Cold Path Elimination

Obvious path elimination can be done either before or
after cold path elimination. If obvious path elimination is
done after cold path elimination then additional paths will
be classified as obvious. While the defining edges of these
additional obvious paths are on a single hot path, they are
on a number of cold paths as well. As a result, the actual ex-
ecution count of the defining edge would be more than the
execution count of the obvious path. However, when a rep-
resentative edge profile is used, the misattribution can be
controlled by selecting the threshold for cold path elimina-
tion. Misattribution of counts is accounted for in our results
in Section 5.

5. Experimental Methodology and Results

In this section, we evaluate the overhead-accuracy trade-
off of our proposed techniques. We have developed a tool
called Targeted Path Profiler (TPP) that instruments exe-
cutables for targeted path profiling. TPP is based on the
PP implementation of the Ball-Larus efficient path profil-
ing algorithm [8]. PP is part of Executable Editing Library
(EEL), a binary analysis and editing tool for SPARC that
hides many of the platform-specific details of modifying
executables [17]. We use Quick Profiler and Tracing Tool

(QPT2), the edge profiler from [8], to collect edge profiles.
TPP eliminates cold paths from a routine only when do-
ing so permits the substitution of a counter array for a hash
table. Obvious paths, however, are eliminated from all rou-
tines. In general, TPP reuses the analysis and instrumenta-
tion from PP where possible but adds functionality to ana-
lyze and instrument routines with cold paths and detect and
eliminate instrumentation for obvious paths. More details
about the implementation can be found in Appendix A.

Results were collected for the SPEC95 and SPEC2000
benchmark suites. We present results of a subset; PP and
QPT2 failed to correctly instrument the omitted bench-
marks benchmarks in our environment. In a few cases, we
identified the problematic routines in the benchmarks and
excluded these routines from instrumentation (to enable rel-
ative comparisons, the routines were excluded for runs of
both PP and TPP). The benchmarks were compiled using
the Sun C compiler (version 5.2) and run with the refer-
ence input set. As we expect the edge profiles collected in
an early stage of the optimizer to be representative of the ex-
ecution during the path profile collection, our experiments
used edge profiles for the ref input set. Runtime results
were collected on a quiet Sun-Blade-1000 running SPARC
Solaris 5.8. In order to allow comparisons to previous work
[8, 9], we present mostly results from SPEC95; note that
TPP works even better with SPEC2000.

TPP can be configured with two parameters: (i) the
threshold for the cold edge criterion and (ii) the threshold
for disconnecting loops from the CFG. A TPP configuration
is specified as TPP(��), where � is the cold edge thresh-
old (edges responsible for less than �% of flow from their
source are removed), and 	 is the loop disconnection thresh-
old (loops with entry edges executed less than 	% of the
loop header execution frequency are removed).

Our accuracy metric, attribution of definite flow (AoDF),
is ���������������	����
������	�. Predominantly, re-
ductions in AoDF are due to “cold counts” that cannot be
attributed to any particular path5. As previously noted in
section 4.3, TPP may also overcount obvious paths due to
the elimination of cold paths. We compute the percentage
of paths undercounted and overcounted (weighted by path
length in blocks), relative to PP’s results.

5.1. Results

Our experiments demonstrate that targeted path profiling
(TPP) reduces the overhead of the original Ball-Larus algo-
rithm by about half (SPEC95, Table 2) to almost two-thirds

5 Comparison of profiles collected by PP and TPP is complicated by the
fact that the two tools may truncate paths along different edges. To en-
able a quantitative comparison of the two profiles, we split all recorded
paths at the union of both truncated edge sets. When PP truncates at an
edge that TPP designates as cold, PP and TPP will have different num-
ber of counts for the path, as TPP will only count the executions that
do not pass through any cold edges.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Overhead (Attribution of Definite Flow)
Benchmark PP TPP (1,1) TPP (5,5) TPP (10,10) TPP (5,15)
compress 23.7% (100%) 15.9% (100%) 16.2% (100%) 12.0% (99.7%) 12.2% (99.7%)
gcc 95.6% (100%) 68.6% (99.2%) 55.7% (96.0%) 52.8% (91.9%) 52.6% (95.9%)
go 67.6% (100%) 48.4% (99.9%) 50.5% (99.6%) 47.9% (98.5%) 49.2% (99.5%)
ijpeg 12.2% (100%) 9.0% (99.9%) 7.6% (99.9%) 8.4% (99.9%) 8.0% (99.6%)
li 18.3% (100%) 15.6% (100%) 14.2% (100%) 12.6% (98.8%) 12.4% (98.8%)
m88ksim 44.0% (100%) 35.3% (99.7%) 38.0% (97.9%) 40.6% (97.0%) 36.5% (98.0%)
perl 34.2% (100%) 7.4% (99.4%) 8.1% (96.8%) 6.5% (93.0%) 8.0% (96.4%)
vortex 34.6% (100%) 9.2% (99.9%) 8.4% (99.5%) 7.0% (99.2%) 6.2% (99.6%)
INT Avg: 41.3% (100%) 26.2% (99.8%) 24.8% (98.7%) 23.5% (97.3%) 23.1% (98.4%)

applu 4.8% (100%) 4.4% (100%) 4.6% (100%) 4.5% (100%) 4.6% (100%)
apsi 8.6% (100%) 5.2% (100%) 3.4% (99.7%) 2.6% (99.5%) 2.4% (99.5%)
hydro2d 29.7% (100%) 3.6% (98.6%) 3.6% (98.0%) 3.2% (93.9%) 3.7% (98.0%)
mgrid 0.8% (100%) 0.8% (100%) 0.7% (99.1%) 0.5% (99.1%) 0.5% (98.4%)
su2cor 7.3% (100%) 2.7% (100%) 1.7% (100%) 1.4% (100%) 1.4% (100%)
tomcatv 12.2% (100%) 0.8% (99.9%) 0.9% (99.9%) 0.6% (99.9%) 0.6% (99.9%)
turb3d 20.2% (100%) 11.4% (99.9%) 8.6% (99.8%) 7.0% (99.2%) 6.4% (99.1%)
FP Avg: 11.9% (100%) 4.1% (99.8%) 3.4% (99.5%) 2.8% (98.8%) 2.8% (99.3%)

Average: 27.6% (100%) 15.9% (99.8%) 14.8% (99.1%) 13.8% (98.0%) 13.6% (98.8%)

Table 2. Comparison of targeted path profiling (TPP) with Ball-Larus path profiling (PP) for a subset of SPEC95 benchmarks. Over-
head is the increase in execution time due to profiling. Attribution of Definite Flow is the fraction of dynamic paths (weighted by path length
in basic blocks) that can be derived from the instrumentation.

Overhead (Attribution of Definite Flow)
Benchmark PP TPP (1,1) TPP (5,5) TPP (10,10) TPP (5,15)
gzip 35.9% (100%) 27.7% (99.7%) 25.0% (99.5%) 26.0% (97.7%) 19.6% (99.5%)
gcc 87.2% (100%) 48.4% (99.4%) 36.7% (97.5%) 33.7% (96.0%) 33.3% (97.5%)
mcf 12.7% (100%) 4.1% (100%) 3.9% (100%) 0.5% (100%) 0.8% (100%)
crafty 38.3% (100%) 29.5% (100%) 36.9% (95.9%) 24.0% (94.7%) 20.2% (95.8%)
parser 33.0% (100%) 18.6% (100%) 18.9% (100%) 16.1% (97.3%) 18.2% (99.5%)
perlbmk 29.6% (100%) 11.9% (99.7%) 9.6% (97.4%) 5.9% (95.8%) 5.5% (99.5%)
gap 32.1% (100%) 16.0% (99.8%) 14.7% (98.5%) 13.5% (96.5%) 15.2% (98.5%)
vortex 51.6% (100%) 13.5% (99.9%) 18.8% (99.6%) 11.0% (99.4%) 8.4% (99.7%)
bzip2 62.6% (100%) 32.2% (99.8%) 26.8% (98.6%) 27.3% (98.5%) 27.2% (98.4%)
twolf 50.7% (100%) 21.7% (100%) 22.6% (99.5%) 19.8% (97.6%) 20.7% (99.5%)
INT Avg: 43.4% (100%) 22.4% (99.8%) 21.4% (98.6%) 17.8% (97.3%) 16.9% (98.6%)

mgrid 1.1% (100%) 1.5% (100%) 0.7% (99.3%) 0.7% (99.3%) 1.2% (99.3%)
art 67.2% (100%) 8.0% (100%) 8.0% (100%) 8.5% (100%) 9.0% (100%)
lucas 3.5% (100%) 0.4% (100%) 0.9% (95.8%) 1.5% (95.8%) 1.8% (100%)
fma3d 17.0% (100%) 5.1% (100%) 6.3% (99.8%) 4.8% (97.9%) 5.9% (98.9%)
FP Avg: 22.2% (100%) 3.7% (100%) 4.0% (98.7%) 3.9% (98.2%) 4.5% (99.6%)

Average: 37.3% (100%) 17.0% (99.9%) 16.4% (98.7%) 13.8% (97.6%) 13.3% (98.9%)

Table 3. Comparison of targeted path profiling (TPP) with Ball-Larus path profiling (PP) for a subset of SPEC2000 benchmarks.

(SPEC2000, Table 3) with a minimal loss of information.
Most of the overhead reduction is achieved by eliminating
the very infrequently executed paths, as shown by the re-
sults for TPP(1,1), which has the most conservative thresh-
olds. In both SPEC95 and SPEC2000, the floating point
benchmarks benefit more than integer benchmarks, which
correlates to the higher fraction of obvious paths shown in
Figure 3.

Tables 2 and 3 show the overhead and accuracy of TPP
under a variety of parameters. While the results are rela-

tively insensitive to the selection of parameters in this range,
it should be noted that overhead does not decrease mono-
tonically with reduction of precision; we attribute this vari-
ation to second order effects due to data layout. TPP(5,15),
which uses a 5% threshold for the cold edge criterion and
a 15% threshold for loop exits (i.e., average iteration count

), seems to be a good trade-off between accuracy and
overhead. For SPEC95 (SPEC2000), average overhead is
reduced from 28% (37%) to 14% (13%) while retaining an
attribution of definite flow of 98.8% (98.9%).

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Enumerated Paths (in thousands)
Benchmark PP TPP(1,1) TPP(5,5) TPP(10,10) TPP(5,15)
compress 2.7 0.5 (18%) 0.5 (18%) 0.4 (15%) 0.4 (15%)
gcc 14,970,000 9,036,000 (60%) 6,554,000 (44%) 5,244,000 (35%) 6,370,000 (43%)
go 688,000 649,000 (94%) 629,000 (91%) 606,000 (88%) 616,000 (90%)
ijpeg 5,490 25.3 (� �%) 18.5 (� �%) 15.9 (� �%) 13.8 (� �%)
li 53,000 9.2 (� �%) 9.1 (� �%) 9.0 (� �%) 9.0 (� �%)
m88ksim 73,000 30.0 (� �%) 25.8 (� �%) 24.3 (� �%) 24.8 (� �%)
perl 1,237,000 27.9 (� �%) 21.7 (� �%) 20.1 (� �%) 19.0 (� �%)
vortex 2,055,000 98,200 (�%) 151 (� �%) 150 (� �%) 150 (� �%)

applu 133,000 4.0 (� �%) 6.4 (� �%) 6.4 (� �%) 4.6 (� �%)
apsi 131,000 6.7 (� �%) 7.2 (� �%) 6.9 (� �%) 6.9 (� �%)
hydro2d 130,000 2.4 (� �%) 1.8 (� �%) 1.8 (� �%) 1.8 (� �%)
mgrid 5,900 2.6 (� �%) 0.5 (� �%) 0.4 (� �%) 0.3 (� �%)
su2cor 149,000 10.1 (� �%) 9.6 (� �%) 10.6 (� �%) 10.2 (� �%)
tomcatv 8,700 0.3 (� �%) 0.3 (� �%) 0.3 (� �%) 0.3 (� �%)
turb3d 75,000 6.7 (� �%) 1.7 (� �%) 1.6 (� �%) 1.6 (� �%)

Table 4. Comparison of the number of static paths between PP and TPP with various cold edge and loop disconnection criteria for
a subset of SPEC95 benchmarks.

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

H
as

he
d

01510
com

01510
gcc

01510
go

01510
ijp

01510
li

01510
m88

01510
per

01510
vor

01510
app

01510
aps

01510
hyd

01510
mgr

01510
su2

01510
tom

01510
tur

01510
avg

Figure 9. Reduction in fraction of routines that require hash table-based counters. Data shown for O: original PP, and TPP with 1, 5,
and 10% cold threshold. Again, it can be seen that most of the benefit is achievable with the lowest threshold.

The reduction of overhead comes primarily from cold
path removal and the synergy between cold path removal
and obvious path removal. Roughly 60% of the overhead
reduction comes from cold path removal alone (data not
shown). Cold path removal is effective at removing static
paths from consideration. Table 4 shows that more than
99% of static paths are removed in all but four SPEC95
benchmarks. In eight cases, more than 99.99% of the static
paths are removed. This reduction in the number of static
paths enumerated does a good job of reducing the num-
ber of routines that require hash tables. As shown in Fig-
ure 9, on average, the number of hashed routines is reduced
by two-thirds. For integer codes, which have many more
hashed routines, the average reduction exceeds 80%. With-
out cold path removal, the benefit from obvious path re-
moval is negligible (data not shown).

While TPP’s optimizations reduce its run-time overhead,
the additional analysis required slows instrumentation. We
estimate that TPP takes on average 74% longer (96% for
INT and 19% for FP) to analyze and instrument a routine
than PP does. We have spent no effort in optimizing TPP’s
instrumentation performance and expect that this could be
significantly improved because TPP does relatively little

work beyond PP. In addition, it is desirable to eliminates
cold paths only when it enables conversion of a hash-table
to an array or a region to be considered obvious, which re-
quires estimating of the benefit of our optimizations. Cur-
renly, for simplicity, our implementation processes some
routines as many as three times to decide whether to deploy
the TPP optimized code. We believe that this inefficiency
can be avoided by restructuring the code. Furthermore, the
run-time cost of instrumentation could be reduced by do-
ing some of the analysis (e.g., building the CFG) off-line.

6. Related Work

Complimentary research has explored how to improve
the quality of information from path profiles by extending
beyond the intraprocedural, acyclic paths measurable by the
Ball-Larus algorithm. Interprocedural Path Profiling [18]
extends the Ball-Larus technique to interprocedural paths.
More recently, a technique to profile overlapping path frag-
ments (from which longer interprocedural and cyclic paths
can be estimated) has been proposed [21]. The increased
overhead of these techniques (e.g., the second algorithm’s
overhead is a factor of four larger than the Ball-Larus algo-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

rithm [21]) can potentially be reduced by targeted path pro-
filing.

Another technique for reducing the overhead of
Ball-Larus-style path profiling, Selective Path Profil-
ing (SPP) [3], tries to eliminate “probes” (updates of the
path register) not necessary for distinguishing a speci-
fied subset of acyclic paths. Their results show a signif-
icant reduction in static probes for “tree-like” methods
when only a few (1-5) paths are of interest; no over-
head results are provided. In contrast, TPP tries to re-
duce overhead by eliminating path counter increments
(when path counts are “obvious”) and converting re-
gions from hash table-based to array-based counters.

7. Conclusion

This paper presents targeted path profiling, a low over-
head path profiling technique for dynamic optimization sys-
tems. Targeted path profiling, a modification of the Ball-
Larus efficient path profiling algorithm, reduces overhead
by converting routines from hash table-based counters to
array-based counters and by eliminating instrumentation
when all paths in a region can be derived from an edge
profile. This profile-guided profiling technique requires an
edge profile to be available at instrumentation time, but we
expect this to be the case in a staged dynamic optimizer.

Our results demonstrate that targeted path profiling is a
promising technique for reducing overhead; our tool TPP
has one-half (SPEC95) or almost one-third (SPEC2000) of
the overhead of the Ball-Larus tool on which it is based,
while collecting only slightly less information. As this re-
duction in profiling overhead likely comes at a cost of
additional analysis and instrumentation effort, TPP can
be viewed as a technique to push work from application
threads into threads of the dynamic optimization system.
Given trends toward higher degrees of thread-level paral-
lelism in hardware, we believe this is a desirable trade-off.

8. Acknowledgments

This research was supported in part by NSF CCR-
0311340 and EIA-0224453 and equipment donations from
Intel and AMD. We thank Glenn Ammons for his as-
sistance with PP and Vikram Adve and the anonymous
reviewers for suggestions to improve the paper.

References

[1] G. Ammons. Personal Communication, 2003.

[2] J. M. Anderson et al. Continuous profiling: where have all
the cycles gone? In Proceedings of the sixteenth ACM sym-
posium on Operating systems principles, pages 1–14. ACM
Press, 1997.

[3] T. Apiwattanapong and M. J. Harrold. Selective Path Pro-
filing. In Proc. of Program Analysis for Software Tools and
Engineering (PASTE), Nov. 2002.

[4] M. Arnold et al. Adaptive Optimization in the Jalapeño JVM.
In Conference on Object-Oriented, pages 47–65, 2000.

[5] M. Arnold and B. G. Ryder. A Framework for Reducing
the Cost of Instrumented Code. In SIGPLAN Conference on
Programming Language Design and Implementation, pages
168–179, 2001.

[6] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans-
parent Dynamic Optimization System. ACM SIGPLAN No-
tices, 35(5):1–12, 2000.

[7] T. Ball. Efficiently Counting Program Events with Support
for On-line Queries. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(5):1399–1410, 1994.

[8] T. Ball and J. R. Larus. Efficient Path Profiling. In Interna-
tional Symposium on Microarchitecture, pages 46–57, 1996.

[9] T. Ball, P. Mataga, and S. Sagiv. Edge Profiling versus Path
Profiling: The Showdown. In Symposium on Principles of
Programming Languages, pages 134–148, 1998.

[10] T. M. Conte, K. N. Menezes, and M. A. Hirsch. Accu-
rate and Practical Profile-Driven Compilation Using the Pro-
file Buffer. In Proceedings of the 29th Annual Interna-
tional Symposium on Microarchitecture, pages 36–45, Paris,
France, 2–4 December 1996. ACM Press.

[11] T. M. Conte, B. A. Patel, and J. S. Cox. Using Branch Han-
dling Hardware to Support Profile-Driven Optimization. In
Proceedings of the 27th Annual International Symposium
on Microarchitecture, pages 12–21, San Jose, CA, USA,
30 November–2 December 1994. ACM Press.

[12] J. Dean et al. ProfileMe : Hardware Support for Instruction-
Level Profiling on Out-of-Order Processors. In International
Symposium on Microarchitecture, pages 292–302, 1997.

[13] R. Gupta, E. Mehofer, and Y. Zhang. Profile Guided Com-
piler Optimizations. In The Compiler Design Handbook:
Optimizations and Machine Code generation. CRC Press,
2002.

[14] T. H. Heil and J. E. Smith. Relational Profiling: Enabling
Thread-Level Parallelism in Virtual Machines. In Inter-
national Symposium on Microarchitecture, pages 281–290,
2000.

[15] W.-M. W. Hwu et al. The Superblock: An Effective Tech-
nique for VLIW and Superscalar Compilation. The Journal
of Supercomputing, pages 229 – 248, 1993.

[16] A. Klaiber. The Technology Behind Crusoe Processors.
Technical report, Transmeta Technical Brief, 2000.

[17] J. R. Larus and E. Schnarr. EEL: Machine-Independent Ex-
ecutable Editing. In SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 291–300,
1995.

[18] D. Melski and T. Reps. Interprocedural Path Profiling. In
Proceedings of the 8th International Conference on Com-
piler Construction, pages 47–62, Amsterdam, The Nether-
lands, 22–26 March 1999. Springer-Verlag.

[19] B. P. Miller et al. The Paradyn Parallel Performance Mea-
surement Tools. IEEE Computer, 28(11):37–46, 1995.

[20] B. Sprunt. Pentium 4 Performance Monitoring Features.
IEEE Micro, 22(4):72–82, Jul/Aug 2002.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

[21] S. Tallam, X. Zhang, and R. Gupta. Extending Path Profiling
across Loop Backedges and Procedure Boundaries. In IEEE-
ACM International Symposium on Code Generation and Op-
timization (CGO), March 2004.

[22] O. Traub, S. Schechter, and M. Smith. Ephemeral Instru-
mentation for Lightweight Program Profiling, 2000.

[23] C. Young. Path-based Compilation. PhD thesis, Harvard
University, Jan. 1998.

[24] C. X. Zhang et al. System Support for Automated Profiling
and Optimization. In Proc. 16th Symposium on Operating
System Principles, pages 15–26, Oct. 1997.

A. Instrumentation Code

TPP, like the PP tool on which it is based, instruments
executables by inserting snippets, or several consecutive
SPARC instructions, into program binaries along control
flow graph edges. TPP uses two modes for array-based path
counting: addressing (used when the maximum edge incre-
ment fits in 11 bits) and indexing (used when the maximum
increment requires up to 13 bits). Due to the similarity of
the code snippets, we show only code for addressing mode
(Appendix A.1); indexing mode is slightly more complex
because the path register must be scaled and added to the
array base address. Appendix A.2 shows the code placed
on presumed cold edges to poison the path register. Ap-
pendix A.3 discusses the need to instrument dummy edges.

A.1. Path Recording Instrumentation

For the array-based recording code, TPP allocates an ar-
ray of 4-byte counters in the global data segment—one for
each path enumerated. In addition, TPP allocates a “cold
counter” at the start of each routine’s array of counters.
Thus, the address of a routine’s cold counter (cc addr)
is simply array base - 4 (counter size is four bytes),
where array base is the address of the first hot counter
in the counter array.

Paths end at loop back edges and EXIT. TPP instru-
ments both of these cases with snippets that increment a
path counter. In routines with some cold paths, TPP inserts
snippets that increment a hot path or cold path counter, de-
pending on whether the path register has been poisoned.
The following code snippet accomplishes this in address-
ing mode:

sethi %hi(cc_addr - inc), %tmp1
or %tmp1, %low(cc_addr - inc), %tmp1
sra %pr, 31, %tmp2
movrnz %tmp2, %tmp1, %pr
ld [%pr + inc], %tmp1
add %tmp1, 1, %tmp1
st %tmp1, [%pr + inc]

The first two instructions set register tmp1 to cc addr
- inc rather than simply cc addr because the load and
store instructions implicitly add inc to the counter address.

If the path register is negative, the sra and movrnz in-
structions set the path register to the address of the cold
counter; otherwise, if the current path is hot, the path reg-
ister remains unchanged and will hold the address of the
path’s counter. The last three instructions increment the
counter whose address is in the path register. This snippet
uses two temporary registers besides the path register.

A.2. Cold Edge Instrumentation

Because path numbers are relatively small
(� ��� ���� ���), TPP uses the highest (31st) bit of the
path register to signify that the path register has been poi-
soned: A negative path register indicates a cold path, and
nonnegative path register indicates a hot path. When in-
dexing mode is used, the execution of some hot paths
will cause the path register to become negative tem-
porarily, due to a negative increment. However, the path
register will be nonnegative at the end of the path be-
cause path numbers are nonnegative.

As presented in Section 4, our algorithm instruments ev-
ery cold edge that has a hot source. TPP inserts the follow-
ing snippet along these edges to mark the current path as
cold:

sethi %hi(0xC0000000), %pr

The snippet sets the two highest bits and clears the other
30 bits of the path register because non-cold edges encoun-
tered later on the same path may increment or decrement
the path register by small amounts. Setting the path regis-
ter to a value that is not close to either the smallest or largest
negative value insulates the path register’s negativity from
these increments and decrements.

A.3. Instrumenting Dummy Edges

Because TPP introduces additional dummy edges when
loops are disconnected, it was necessary for us to add in-
strumentation to the dummy edges themselves. In contrast,
when PP inserts dummy edges (for back edges or path trun-
cation) it marks them as “uneditable.” Their intuition was
that, as dummy edges are not part of the original CFG,
they cannot be instrumented [1]. PP avoids instrumenting
dummy edges by placing a subset of them (exit dummy
edges from truncations and all entry dummy edges) in the
spanning tree used in selecting the instrumented edges [7].
This approach cannot be used in TPP without adding cycles
to the spanning tree. To support instrumentation of dummy
edges, TPP tracks the relationships between dummy edges
and the removed edges so that instrumentation can be trans-
ferred. If an edge ��
 was removed, then TPP places the
instrumentation for the exit dummy edge (�� ����) on
the edge ��
, followed by the instrumentation for the en-
try dummy edge (����� �
).

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

