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Abstract

Static Single Assignment form is an intermediate rep-
resentation that uses φ instructions to merge values at
each confluent point of the control flow graph. φ instruc-
tions are not machine instructions and must be renamed
back to move instructions when translating out of SSA
form. Without a coalescing algorithm, the out of SSA
translation generatesmanymove instructions.Leung and
George [8] use a SSA form for programs represented as
native machine instructions, including the use of ma-
chine dedicated registers. For this purpose, they handle
renaming constraints thanks to a pinning mechanism.
Pinning φ arguments and their corresponding definition
to a common resource is also a very attractive technique
for coalescing variables. In this paper, extending this
idea, we propose a method to reduce the φ-related copies
during the out of SSA translation, thanks to a pinning-
based coalescing algorithm that is aware of renaming con-
straints.We implemented our algorithm in the STMicro-
electronics Linear Assembly Optimizer [5]. Our experi-
ments show interesting results when comparing to the ex-
isting approaches of Leung and George [8], Sreedhar et
al. [11], and Appel and George for register coalescing [7].

1. Introduction

Static Single Assignment The Static Single As-
signment (SSA) form is an intermediate representation
widely used in modern compilers. SSA comes in many
flavors, the one we use is the pruned SSA form [4]. In
SSA form, each variable name, or virtual register, cor-
responds to a scalar value and each variable is defined

∗ Many thanks to AlainDarte, Stephen Clarke and the reviewers
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only once in the program text. Because of this single
assignment property, the SSA form contains φ instruc-
tions that are introduced to merge variables that come
from different incoming edges at a confluent point of
the control flow graph. These φ instructions have no di-
rect corresponding hardware instructions, thus a trans-
lation out of SSA must be performed. This transforma-
tion replaces φ instructions with move instructions and
some of the variables with dedicated ones when nec-
essary. This replacement must be performed carefully
whenever optimizations such as value numbering have
been done while in SSA form. Moreover, a naive ap-
proach for the out of SSA translation generates a large
number of move instructions. This paper addresses the
problem of minimizing the number of generated copies
during this translation phase.

Previous Work Cytron et al. [4] proposed a simple
algorithm that first replaces a φ instruction by copies
into the predecessor blocks, then relies on Chaitin’s co-
alescing algorithm [3] to reduce the number of copies.
Briggs et al. [1] found two correctness problems in this
algorithm, namely the swap problem and the lost copy
problem, and proposed solutions to these. Sreedhar et
al. [11] proposed an algorithm that avoids the need for
Chaitin’s coalescing algorithm and that can eliminate
more move instructions than the previous algorithms.
Leung and George [8] proposed an out-of-SSA algo-
rithm for an SSA representation at the machine code
level. Machine code level representations add renam-
ing constraints due to ABI (Application Binary In-
terface) rules on calls, special purpose ABI defined reg-
isters, and restrictions imposed on register operands.

Context of the study Our study of out-of-SSA al-
gorithms was needed for the development of the STMi-
croelectronics Linear Assembly Optimizer (LAO) tool.
LAO converts a program written in the Linear Assem-
bly Input (LAI) language into the final assembly lan-
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guage that is suitable for assembly, linking, and execu-
tion. The LAI language is a superset of the target as-
sembly language. It allows symbolic register names to
be freely used. It includes a number of transformations
such as induction variable optimization, global value
numbering, and optimizations based on range propa-
gation, in an SSA intermediate representation. It in-
cludes scheduling techniques based on software pipelin-
ing and superblock scheduling, and uses a repeated coa-
lescing [5] register allocator, which is an improvement
over the iterated register coalescing from George and
Appel [7]. The LAO tool targets the ST120 processor,
a DSP processor with full predication, 16-bit packed
arithmetic instructions, multiply-accumulate instruc-
tions and a few 2-operands instructions such as ad-
dressing mode with auto-modification of base pointer.

Because of these particular features, an out-of-SSA
algorithm aware of renaming constraints was needed.
In fact, delaying renaming constraints after the out-
of-SSA phase would result in additional move instruc-
tions (see Section 5), along with possible infeasibili-
ties and complications. We modified an out-of-SSA al-
gorithm from Leung and George, to handle renaming
constraints and reduce the number of move instructions
due to the replacement of φ instructions.
Layout of this paper The paper is organized as fol-
lows. Section 2 states our problem and gives a brief
description of Leung and George’s algorithm. In Sec-
tion 3, we present our solution to the problem of reg-
ister coalescing during the out-of-SSA phase. Section 4
discusses, through several examples, how our algorithm
compares to others. In Section 5, we present results
that show the effectiveness of our solution on a set of
benchmarks, and we finally conclude. A more complete
version of this paper is available as a LIP research re-
port [10] containing a refinement of Leung and George’s
algorithm and a NP-completeness proof of the pinning
based coalescing problem.

2. Problem statement and Leung and
George’s algorithm

Our goal is to handle renaming constraints and coa-
lescing opportunities during the out of SSA translation.
For that, we distinguish dedicated registers (such as
R0 or SP, the stack pointer) from general-purpose reg-
isters that we assume in an unlimited number (we call
them virtual registers or variables). We use a pin-
ning mechanism, in much the same way as in Leung and
George’s algorithm [8], so as to enforce the use of these
dedicated registers and to favor coalescing. Then, con-
straints on the number of general-purpose registers are
handled later, in the register allocation phase.

2.1. Pinning mechanism

An operand is the textual use of a variable, either
as a write (definition of the variable) or as a read (use
in an instruction). A resource is either a physical reg-
ister or a variable. Resource pinning or simply pin-
ning is a pre-coloring of operands to resources. We call
variable pinning the pinning of the (unique) defini-
tion of a variable. Due to the semantics of φ instruc-
tions, all arguments (i.e. use operands) of a φ instruc-
tion are pinned to the same resource as the variable
defined (i.e. def operand) by the φ.

On the ST120 processor, as in Leung and George’s
algorithm, we have to handle Instruction Set Architec-
ture (ISA) register renaming constraints and Applica-
tion Binary Interface (ABI) function parameter pass-
ing rules. Figure 1, expressed in SSA pseudo assembly
code, gives an example of such constraints. In this ex-
ample and in the rest of this paper, the notation X↑R

is used to mark that the operand X is pinned to the re-
source R. When the use of a variable is pinned to a dif-
ferent resource than its definition, a move instruction
has to be inserted between the resource of the defini-
tion and the resource of the use. Pinning the variable
to the same resource as its uses has the effect of coa-
lescing these resources (i.e., it deletes the move).

2.2. Correct pinning

Figure 2 gives an example of renaming constraints
that will result in an incorrect code. On the left of Fig-
ure 2, the renaming constraint is that all variables re-
named from the dedicated register SP (Stack Pointer)
must be renamed back to SP, due to ABI constraints.
On the right, after replacement of the φ instructions,
the code is incorrect. Such problem mainly occurs af-
ter optimizations on dedicated registers: SSA optimiza-
tions such as copy propagation or value numbering
must be careful to maintain a semantically correct SSA
code when dealing with dedicated-register constraints.
More details on correctness problems related to dedi-
cated registers are given in the extended version of this
paper [10].

Cases of incorrect pinning are given in Figure 4. In
this figure, Case 1 and Case 2 are correct if and only if
x and y are the same variable. This is because two dif-
ferent values cannot be pinned to a unique resource if
both of them must be available at the entry point of
an instruction (Case 2) or at the exit point of an in-
struction (Case 1). A similar case on φ instructions is
given in Case 3: the set of φ instructions at a block en-
try has a parallel semantics, therefore two different φ
definitions in the same block cannot be pinned to the
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Original code:

.input C, P
load A, @P++

load B, @P++
call D = f(A, B)
E = C + D
K = 0x00A12BFA

F = E − K
.output F

SSA pinned code: Comments:

S0 : .input C↑R0, P↑P0 Inputs C and P must be in R0 and P0 at the entry.

S1 :

{
load A, @P
autoadd Q↑Q, P↑Q, 1

The second def. of P is renamed as Q in SSA, but P
and Q must use the same resource for autoadd, e.g., Q.

S2 : load B, @Q
S3 : f D↑R0, A↑R0, B↑R1 Parameters must be in R0 and R1. Result must be in R0.
S4 : add E, C, D
S5 : make L, 0x00A1
S6 : more K↑K , L↑K , 0x2BFA Operands K & L must use the same resource, e.g., K.
S7 : sub F , E, K
S8 : .output F↑R0 Output F must be in R0.

Figure 1. Example of code with renaming constraints: function parameter passing rules (statements S0, S3,
and S8) and 2-operand instruction constraints (statements S1 and S6).

y1 = . . .
x1 = . . .

y1 = . . .
x1 = . . .

parallel copies: SP = . . .

[Code after Leung and]

sp3↑SP = φ(sp1, y1)
. . . = sp3 . . . = SP

∥∥∥ SP = y1
SP = x1

sp4↑SP = φ(x1, sp2)
. . . = sp4 . . . = SP

[Initial pinned code] [George’s reconstruction]

sp1↑SP = . . . sp2↑SP = . . .

SP = . . .

Figure 2. A too constrained pinning can lead to
an incorrect code as for the parallel copies here.

same resource. On the other hand, on most architec-
tures, Case 4 is a correct pinning. But, the correspond-
ing scheme on a φ instruction (Case 5) is forbidden
when s �= r: this is because all φ arguments are implic-
itly pinned to the resource the φ result is pinned to.
The motivation for these semantics is given in [10]. Fi-
nally, Case 6 corresponds to a more subtle incorrect
pinning, similar to the problem stressed in Figure 2.

2.3. Leung and George’s algorithm

Leung and George’s algorithm is decomposed into
three consecutive phases: the collect phase collects in-
formation about renaming constraints; the mark phase
collects information about the conflicts generated by
renaming; the reconstruct phase performs renaming, in-
serts copies when necessary and replaces φ instructions.

Pinning occurs during the collect phase, and then
the out of SSA translation relies on the mark and re-
construct phases. Figure 3 illustrates the transforma-
tions performed during those last two phases:

• x3 is pinned to R0 on its definition. But, on the
path to its use in the return, x4 is also pinned to
R0 on the call to g. We say that x3 is killed, and
a repair copy to a new variable x′3 is introduced.

return R0
R0 = x′

3

∥∥∥ R0 = x′
1

R1 = R0

R0 = g(R0, R1)

R0 += 1

x′
3 = R0

y2 = R1 + K
R1 = y2

x′
1 = R0

input R0, R1

x2↑R0= x1↑R0 +1

y2 = y1 + K

x4↑R0= g(x3↑R0, y2↑R1)

y1↑R1= φ(y0, x2)
x3↑R0= φ(x1, x1)

return x3↑R0

[Initial pinned SSA code]

x1↑R0= φ(x0↑R0, x4↑R0)

input x0↑R0, y0↑R1

[Resulting out-of-SSA code]

Figure 3. Transformation of already pinned SSA
code by Leung and George’s algorithm.

y1 = · · ·
x1 = · · ·

L1 :

Case 5: x↑r= φ(· · · y↑s · · ·)Case 1: (x↑r , y↑r) = instr(...)

Case 2: ... = instr(x↑r , y↑r)

Case 3:

∥∥∥ x↑r= φ(...)
y↑r= φ(...)

Case 4: x↑r= instr(y↑r)

Case 6:

x↑r= (x1, · · ·)y↑r= (· · · , y1)

Figure 4. All but Case 4 are incorrect pinning.

• The use of x3 in the call to g is pinned to R0, while
x3 is already available in R0 due to a prior pin-
ning on the φ instruction. The algorithm is care-
ful not to introduce a redundant move instruction
in this case.

• The copies R0 = x′1; R1 = R0 are performed in
parallel in the algorithm, so as to avoid the so-
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called swap problem. To sequentialize the code, in-
termediate variables may be used and the copies
may be reordered, resulting in the code R1 = R0;
R0 = x′1 in this example.

Now, consider the non-pinned variable y2 of Figure 3
and its use in the definition of x4. The use is pinned to
a resource, R1, and y2 could have been coalesced to
R1 without creating any interference. The main limi-
tation of Leung and George’s algorithm is its inabil-
ity to do so. The same weakness shows up on φ argu-
ments, as illustrated by Figure 5(a): on a φ instruc-
tion X = φ(x0, . . . , xn), each operand xi is implicitly
pinned to X , while the definition of each xi may not.
Our pinning-based coalescing is an extension to
the pinning mechanism whose goal is to over-
come this limitation.

2.4. The φ coalescing problem

As opposed to the pinning due to ABI constraints,
which is applied to a textual use of an SSA variable,
the pinning related to coalescing is applied only to vari-
able definitions (variable pinning). Figure 5 illustrates
how this pinning mechanism can play the role of a coa-
lescing phase by preventing the reconstruction phase of
Leung and George’s algorithm from inserting move in-
structions: in Figure 5(b), x1 and x2 were pinned to x
to eliminate these move instructions; however, this pin-
ning creates an interference, which results in a repair
move x′ = x along with a move x = x′ on the replace-
ment of the φ instruction; in Figure 5(c), to avoid the
interference, only x2 was pinned to x, resulting in only
one move instruction.

Therefore, we will only look for a variable pinning
that does not introduce any new interference. In this
case, for a φ instruction X = φ(x0, . . . , xn), we say
that the gain for φ is the number of indices i such that
the variable xi is pinned to the same resource as X .
Hence, our φ coalescing problem consists of find-
ing a variable pinning, with no new interference
(i.e., without changing the number of variables
for which a repair move is needed), that maxi-
mizes the total gain, taking into account all φ
instructions in the program.

Algorithm 1 Main phases of our algorithm.
Program pinning(CFG Program P)
foreach basic block B in P, in an inner to outer loop traversal

Initial G=Create affinity graph(B)
PrePruned G=Graph InitialPruning(Initial G)
Final G=BipartiteGraph pruning(PrePruned G)
PrunedGraph pinning(Final G)

(b) Final code if x, x1

the virtual resource x
x2 are pinned to

x1 = exp1
x2 = exp2

x = φ(x1, x2)

Initial SSA form

x = exp1

x = exp2

x’=x
conflict

save x

restore x x = x′

x2 = exp2

x1 = exp1

x = x1 x = x2

x = exp2

x1 = exp1
x2 pinned to x

x = x1

x2 in x

no copy needed

(c) Final code if
x and x2 are pinned

to the virtual resource x

(a) Final code if nothing pinned

Figure 5. Inability of Leung and George’s algo-
rithm to coalesce x = x1 and x = x2 instructions
(a) ; a worst (b) and a better (c) solution using
variable pinning of x1 and x2.

3. Our solution

The φ coalescing problem we just formulated is NP-
complete (see [10] for details). Instead of trying to min-
imize the gain for all φ instructions together, our so-
lution relies on a sequence of local optimizations, each
one limited to the gain for all φ instructions defined
at a confluence point of the program. These confluence
points are traversed based on an inner to outer loop
traversal, so as to optimize in priority the most fre-
quently executed blocks. The skeleton of our approach
is given in Algorithm 1.

Let us first describe the general ideas of our solu-
tion, before entering the details. For an SSA variable
y, we define y = Resource def(y) as r if the defini-
tion of y is pinned to r, or y otherwise. Also, for
simplicity, we identify the notion of resource with the
set of variables pinned to it. For a given basic block, we
create what we call an affinity graph. Vertices repre-
sent resources; edges represent potential copies between
variables that can be coalesced if pinned to the same
resource. Edges are weighted to take into account in-
terferences between SSA variables; then the graph is
pruned (deleting in priority edges with large weights)
until, in each resulting connected component, none of
the vertices interfere: they can now be all pinned to
the same resource. The rest of this section is devoted
to the precise description of our algorithm. A pseudo
code is given in Algorithm 2 on page 5. The consecu-
tive steps of this algorithm are applied on the example
of Figure 7.

4
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Algorithm 2 Formal description of our algorithm.
Create affinity graph(CFG Node current node)
(E, V ) = (∅, ∅)
for each X = φ(x1, . . . , xn) of current node

V = V
⋃{Resource def(X)}

for each x ∈ {x1, . . . , xn}
V = V

⋃{Resource def(x)}
e = (Resource def(X), Resource def(x))
if (e �∈ E) multiplicity(e)=0
E = E

⋃{e}, multiplicity(e)++
return G = (E, V )

Graph InitialPruning(Graph (V, E))
foreach (x1, x2) ∈ E,

if (Resource interfere(x1, x2))
E −= (x1, x2)

return (V, E)

BipartiteGraph pruning(Bipartite Multi Graph (V, E))
{ Evaluates the weight for each edge }
for all e ∈ E, weight(e)=0
for all ((x, x1), (x, x2)) ∈ E2 such that x1 �= x2

if Resource interfere(x1, x2)
weight((x, x1))+=multiplicity((x, x2))
weight((x, x2))+=multiplicity((x, x1))

{Prunes in decreasing weight order
and update the weight}

while weight(ep)> 0
let ep = (X, x) such that

∀e ∈ E, weight(ep)≥weight(e)
do

E −= ep

for all e = (X, y) ∈ E
weight(e)−=multiplicity(ep)

for all e = (Y, x) ∈ E
weight(e)−=multiplicity(ep)

return (V, E)

PrunedGraph pinning(Graph G, Program P)
foreach V ∈ {connected components of G}

let u =
⋃

v∈V
v

let w =

{
vi if vi ∈ V is a physical resource
u otherwise

foreach (OP ) d1, . . . = instr(a1, . . .) ∈ P
foreach di such that di ∈ u

pin di to w in (OP )
foreach ai↑r such that r ∈ V

replace r by w

Variable kills(Variable a, Variable b)
if the definition of b dominates those of a

and a and b interfere
return true {Case 1}

if a is defined as a = φ(a1 : B1, . . . , an : Bn)
for i = 1 to n

if b is live out of Bi and b �= ai

return true {Case 2}
return false

Variable stronglyInterfere(Variable a, Variable b)
if a and b are defined by φ instructions

let a : Ba = φ(a1 : Ba,1, . . . , an : Ba,n)
let b : Bb = φ(b1 : Bb,1, . . . , bm : Bb,m)
if Ba = Bb return true {Case 4}
for i = 1 to n

if Ba,i is a predecessor of Bb

let Ba,i = Bb,j

if ai �= bj return true {Case 3}
return false

else if a and b are defined in the same instruction
let (· · · a · · · b · · ·) = instr(· · ·)
return true

return false

Resource killed(Resource A)
let A = {a1, . . . , an}
killed withinA =

{ai ∈ A|∃aj ∈ A, Variable kills(aj , ai)}
return killed withinA

Resource interfere(Resource A, Resource B)
let A = {a1, . . . , an}
let B = {b1, . . . , bm}
let killed withinA = Resource killed(A)
let killed withinB = Resource killed(B)
if A and B are physical resources

if A �= B return true
for all (a, b) ∈ A × B

if a �∈ killed withinA and Variable kills(b, a)
return true

if b �∈ killed withinB and Variable kills(a, b)
return true

if Variable stronglyInterfere(a, b)
return true

return false

3.1. The initial affinity graph

For a given basic block, the affinity graph is an undi-
rected graph where each vertex represents either a vari-
able or its corresponding resource (if already pinned):
two variables that are pinned to the same resource are
collapsed into the same vertex. Then, for each φ in-
struction X = φ(x1, . . . , xn) at the entry of the basic

block, there is an affinity edge, for each i, 0 ≤ i ≤ n, be-
tween the vertex that contains X and the vertex that
contains xi.

3.2. Interferences between variables

We define below four classes of interferences that
can occur when pinning two operands of a φ instruc-
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tion to the same resource. We differentiate simple inter-
ferences from strong interferences: a strong interference
generates an incorrect pinning. On the other hand, a
simple interference can always be repaired despite the
fact that the repair might generate additional copies.
The goal is then to minimize the number of simple in-
terferences and to avoid all strong interferences. The
reader may find useful to refer, for each class, to Fig-
ure 6.

[Class 1] Consider two variables x and y. If there
exists a point in the control flow graph where both x
and y are alive, then x and y interfere. Moreover, con-
sidering the definitions of x and y, one dominates the
other (this is a property of the SSA form). If the defini-
tion of x dominates the definition of y, we say that the
definition of x is killed by y. The consequence is that pin-
ning the definitions of x and y to a common resource
would result in a repair of x (as in Leung and George’s
technique).

[Class 2] Consider a φ instruction y = φ(. . . , z, . . .)
in basic block B. Let C be the block where the ar-
gument z comes from; textually, the use of z appears
in block B (and it is implicitly pinned to y), but se-
mantically, it takes place at the end of basic block C
(this is where a move instruction, if needed, would be
placed). If x �= z and x is live-out of block C, then
x and the use of z interfere and we say that the def-
inition of x is killed by y. Note our definition of live-
ness: a φ instruction does not occur where it textu-
ally appears, but at the end of each predecessor basic
block instead. Hence, if not used by another instruc-
tion, z would be treated as dead at the exit of block C
and at the entry of block B.

[Class 3] Consider two variables x and y, both de-
fined by φ instructions, but not necessarily in the same
basic block. Some of their respective arguments (for ex-
ample xi and yj) may interfere in a common predeces-
sor block B. In this case, we say that the definitions of x
and y strongly interfere: indeed, as explained in Sec-
tion 2.2, pinning those two definitions together is in-
correct.

[Class 4] Consider φ instructions y = φ(y1, . . . , yn)
and z = φ(y1, . . . , yn), in the same basic block and with
the same arguments. Because of Leung and George’s re-
pairing implementation, they cannot be considered as
identical and we need to consider that they strongly in-
terfere. Notice that value numbering should have elim-
inated this case before. Note that, by definition of
Classes 3 and 4, all variables defined by φ instructions
in the same basic block strongly interfere.

Also, we consider that variables pinned to two differ-
ent physical registers strongly interfere.

y kills x
[Class 1] [Class 2]

y kills x

y = φ(y1, y2)
z = φ(y1, y2)

x strongly interferes with y
y strongly interferes with z

[Classes 3 & 4]

x = . . .
y = . . ....

x2 �= y1

. . .

x = . . .
z �= x

y = φ(., z)
. . . = x

x = φ(., x2)

Figure 6. Different kind of interferences between
variables.

3.3. Interferences between resources

After the initial pinning (taking into account re-
naming constraints), a resource cannot contain two
variables that strongly interfere. However, simple in-
terferences are possible; they will be solved by Leung
and George’s repairing technique. During our iterative
pinning process, we keep merging more and more re-
sources, but we make sure not to create any new inter-
ference. We say that two resources A = {x1, . . . , xn}
and B = {y1, . . . , ym} interfere if pinning all the vari-
ables {x1, . . . , xn} and {y1, . . . , ym} together creates ei-
ther a new simple interference, or a strong interference,
i.e., if there exist xi and yj that interfere. This check
is done by the procedure Resource interfere; it uses the
procedure Resource killed that gives, within a given re-
source, all the variables already killed by another vari-
able. Note that for the lost copy problem a variable is
killed by itself. Resource killed is given in a formal de-
scription, but obviously the information can be main-
tained and updated after each merge.

3.4. Pruning the affinity graph

The pruning phase is based on the interference anal-
ysis between resources. More formally, the optimization
problem can be stated as follows. Let G = (V,EAffinity)
be the graph obtained from Create affinity graph (as ex-
plained in Section 3.1): the set V is the set of vertices
labeled by resources and EAffinity is the set of affin-
ity edges between vertices. The goal is to prune (edge
deletion) the graph G into G′ = (V,Epinned) such that:

Condition 1: the cardinality of Epinned is maxi-
mized;

Condition 2: for each pair of resources (v1, v2) ∈
V 2 in the same connected component of G′, v1 and v2
do not interfere, i.e., Resource interfere(v1, v2) = false.

In other words, the graphG is pruned into connected
components such that the total number of deleted
edges from EAffinity is minimized and no two resources
within the same connected component interfere.

6
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x2

class1

class2

x1

X2

x1

X2 0

A = {x1, X2}

X1 = φ(x2, x1)
X3 = φ(x2, x3)

X1
x2

x3

X3
0

0

0

{x1, X2} = A

A = {x1, X2, X1}
B = {x3, x2, X3}

X1
x2

x3

X3
0

class1class3
1

2

1 {x1, X2} = AInitial G=PrePruned G: A = . . .
B = . . .

{x1 is in A, x2 in B}

. . .

. . .

Step 1: coalescing of L1:

x1↑A= . . .
x2↑B= . . .

x3↑B= . . .

X2↑A= φ(x1, x2) X1↑A= φ(x2, x1)
X3↑B= φ(x2, x3)

Initial G:

PrePruned G=Final G:

Resources:

x2 = . . .

. . .

. . .

x3 = . . .

L2:

x1↑A= . . .

X2↑A= φ(x1, x2)

Resources:

Final G:

Step 2 (final): coalescing of L2:

Pinned SSA code after step 1:Initial SSA code: Pinned SSA code after step 2:

Final code:

x2 = . . .

. . .

x1 = . . .

X2 = φ(x1, x2)

. . .

x3 = . . .

X1 = φ(x2, x1)
X3 = φ(x2, x3)

L1:

B = . . .
A = B

. . .

{x2 is in A}{x3 is in B}

{X2 is in A} {X1 is in A, X3 in B}

Figure 7. Program pinning on an example. Affinity and interference edges are respectively represented using
dashed and full lines.

First, because of Condition 2, all edges (v1, v2)
in EAffinity such that v1 and v2 interfere need
to be removed from G. The obtained graph
PrePruned G is bipartite. Indeed, let {Xi}1≤i≤m,
with Xi = φ(xi,1, . . . , xi,n), be the set of φ instruc-
tions of the current basic block B. There are two
kinds of vertices in G, the vertices for the defini-
tions VDEFS = {Resource def(Xi)}1≤i≤m and the
other ones, for the arguments not already in VDEFS ,
VARGS = {Resource def(xi,j)}1≤i≤m, 1≤j≤n \ VDEFS .
By construction, there is no affinity edge between two
elements of VARGS . Also, because elements of VDEFS

strongly interfere together, there remains no edge be-
tween two elements of VDEFS . Thus, G is indeed
bipartite.

Unfortunately, even for a bipartite affinity graph,
the pruning phase is NP-complete in the number of
φ instructions (see [10]). Therefore, we use a heuristic
algorithm based on a greedy pruning of edges, where
edges with large weights are chosen first. The weight
of an edge (x, y) is the number of neighbors of x (resp.
y) that interfere with y (resp. x). This has the effect
of first deleting edges that are more likely to discon-
nect more interfering vertices (see details in the proce-
dure BipartiteGraph pruning). Note that, in the partic-
ular case of a unique φ instruction, this is identical to
the “Process the unresolved resources” of the al-
gorithm of Sreedhar et al. [11].

3.5. Merging the connected components

Once the affinity graph has been pruned, the re-
sources of each connected component can be merged.
We choose a reference resource in this connected com-
ponent, either the physical resource if it exists (in this
case, it is unique since two physical resources always in-
terfere), or any resource otherwise. We change all pin-
nings to a resource of this component into a pinning
to the reference resource. Finally, we pin each vari-
able (i.e., its definition) in the component to this refer-
ence resource. The correctness of this phase is insured
by the absence of any strong interference inside the
new merged resource. A formal description of the algo-
rithm is given by the procedure PrunedGraph pinning.
In practice, the update of pinning can be performed
only once, just before the mark phase, so requiring only
one traversal of the control flow graph. Also note that
the interference graph can be built incrementally at
each call to Resource interfere and updated at each re-
source merge, using a simple vertex-merge operation:
hence, as opposed to the merge operation used in the
iterated register coalescing algorithm [7] where inter-
ferences have to be recomputed at each iteration, here
each vertex represents a SSA variable and merging is a
simple edge union.

We point out that, after this phase, our algorithm re-
lies on the mark and reconstruct phases of Leung and
George’s algorithm. But we use several refinements,
whose details are given in [10].
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4. Theoretical discussion

We now compare our algorithm with previous ap-
proaches, through hand crafted examples.

4.1. Our algorithm versus register coalesc-
ing

The out-of-SSA algorithm of Briggs et al. [1] relies
on a Chaitin-style register coalescing to remove move
instructions produced by the out of SSA translation.
ABI constraints for a machine code level intermedi-
ate representation can be handled after the out of SSA
translation by insertion of move instructions at proce-
dure entry and exit, around function calls, and before
2-operand instructions. However, several reasons favor
combined processing of coalescing and ABI renaming
during the out-of-SSA phase:

[CC1] SSA is a higher level representation that al-
lows a more accurate definition of interferences. For ex-
ample (see Figure 8), it allows partial coalescing, i.e.,
the coalescing of a subset of the variable definitions.

R0 = f3
r3 = R0
R0 = w

{z is in R0}
· · · = R0

R0 = f2R0 = f1R0 = f1
z = R0

R0 = f2
z = R0

· · · = z

R0 = f3

· · · = r · · · = r3

[Initial code] [Partially coalesced code]

z = w

Figure 8. Because the physical register R0 and
z interfere, [Initial code] cannot be coalesced by
Chaitin’s register coalescing; even if the three
definitions of R0 are constrained to be done on
R0 (and then even in SSA “R0” and “z” inter-
fere), the pinning mechanism allows z andR0 to
be coalesced, we say partially.

[CC2] The classical coalescing algorithm is greedy,
so it may block further coalescings. Instead, for each
merging point of the control flow graph, our algorithm
optimizes together the set of coalescing opportunities
for the set of φ instructions of this point.

[CC3] The main motivation of Leung and George’s
algorithm is that ABI constraints introduce many addi-
tional move instructions. Some of these will be deleted
by a dead code algorithm, but most of them will have to
be coalesced. An important point of our method is the
reduction of the overall complexity of the out-of-SSA
renaming and coalescing phases: as explained in Sec-
tion 3.5, the complexity of the coalescings performed
under the SSA representation benefits from the static
single definition property.

4.2. Our algorithm versus the algorithm of
Sreedhar et al.

The technique of Sreedhar et al. [11] consists in first
translating the SSA form into CSSA (Conventional
SSA) form. In CSSA, it is correct to replace all vari-
able names that are part of a common φ instruction by
a common name, then to remove all φ instructions. To
go from SSA to CSSA however, we may create new vari-
ables and insert move instructions to eliminate φ vari-
able interferences that would otherwise result in an in-
correct program after renaming. Sreedhar et al. pro-
pose three algorithms to convert to CSSA form. We
only consider the third one, which uses the interfer-
ence graph and some liveness information to minimize
the number of generated move instructions. Figures 9-
11 illustrate some differences between the technique of
Sreedhar et al. and ours.

[CS1] Sreedhar et al. optimize separately the re-
placement of each φ instruction. Our algorithm consid-
ers all the φ instructions of a given block to be opti-
mized together. This can lead to a better solution as
shown in Figure 9.

x = f1

y = f2

x = f1

z = f3

[Initial SSA] [Our solution][Sreedhar et al.]
[Solution of]

S1 : X = φ(x, y)
S2 : Y = φ(z, y)

Y = f3

X = x
Y = X Y = f3 X = Y

X = f1

Y = f2X = f2

Figure 9. Sreedhar et al. treat S1 and S2 in se-
quence: for S1, {x, y} interfere so X = x is in-
serted and {y,X} are regrouped in the resource
X; for S2, {z,X} interfere so Y = X is inserted
and Y = {z, Y }.

[CS2] Sreedhar et al. process iteratively modify the
initial SSA code by splitting variables. By doing so
information on interferences becomes scattered and
harder to use. Thanks to pinning, throughout the pro-
cess we are always reasoning on the initial SSA code. In
particular, as illustrated by Figure 10, we can take ad-
vantage of the parallel copies placement.

[CS3] Finally, because our SSA representation is at
machine level, we need to take into account ABI con-
straints. Figure 11 shows an example where we make
a better choice of which variables to coalesce by tak-
ing the ABI constraints into account.
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y2 = x2

input x2, y2

X = x2

x2 = X

X = y2

{x3 is in X}
{y3 is in y2}

input x1, y1

S1 : x2 = φ(x1, x3)
S2 : y2 = φ(y1, y3)

S3 : x3 = φ(x2, y2)
S4 : y3 = φ(y2, x2)

input x1, y1

t = y1

y1 = x1

x1 = t

. . . = f(x3, y3) . . . = f(x2, y2) . . . = f(x1, y1)

[Initial SSA] [Sreedhar et al.] [Our solution]

Figure 10. The superiority of using parallel
copies. For the solution of Sreedhar et al. we sup-
pose S1, S2, S3 and S4 were treated in this order.

b0 = f1

b1 = φ(b0, B)
b2 = b1 + 1 (autoadd)
a = · · · a = · · ·

B = f1B = f1

{b1 is in B}
b2 = B + 1 (autoadd)
B = · · ·

{a is in B}L1 : L2 : B = b2 B = a

[Our solution]

B = φ(a, b2)

[Initial SSA] [Sreedhar et al.]

B+ = 1

Figure 11. {a, b2} interfere: without theABI con-
straints information, adding themoveonblockL1

or L2 is equivalent. Sreedhar et al. may make the
wrong choice: treating the ABI afterward would
replace the autoadd into B = B + 1 ; b2 = B
(because {B, b2} interfere) resulting in one more
move.

4.3. Limitations

Below are several points that expose the limitations
of our approach:

[LIM1] Our algorithm is based on Leung and
George’s algorithm that decides the place where move
instructions are inserted. Also, we use an approxi-
mation of the cost of an interference compared to
the gain of a pinning. Hence, even if we could pro-
vide an optimal solution to our formulation of the
problem, this solution would not necessarily be an op-

timal solution for the minimization of move instruc-
tions.

[LIM2] As explained in Section 2.3, the main limi-
tation of Leung and George’s algorithm is that, when
the use of a variable is pinned to a resource, it does not
try to coalesce its definition with this resource. This can
be avoided by using a pre-pass to pin the variable defi-
nitions. But, as illustrated by Figure 12, repairing vari-
ables that are introduced during Leung and George’s
repairing phase cannot be handled this way.

R0 = x′
. . . = f(R0)

x↑x= φ(x0, x1)

x1↑x= x + 1

. . . = f(x↑R0)

x0↑x= . . .

[Initial SSA code]

x′ = x (repair)
x = x + 1

x = . . .

[Our solution]

x = x + 1
R0 = x (repair)

. . . = f(R0)

x = . . .

[Optimal solution]

Figure 12. Limitation of Leung and George’s re-
pairing process: the repairing variable x′ is not
coalesced with further uses.

[LIM3] As explained in [10], our φ coalescing prob-
lem is NP-complete. Note also that a simple extension
of the proof shows the NP-completeness of the prob-
lem of minimizing the number of move instructions.

[LIM4] Finally, in the case of strong register pres-
sure, the problem becomes different: coalescing (or
splitting) variables has a strong impact on the col-
orability of the interference graph during the register
allocator phase (e.g. [9]). But this goes out of the scope
of this paper.

5. Results

We conducted our experiments on several bench-
marks represented in LAI code. Since the LAI language
supports predicated instructions, the LAO tool uses a
special form of SSA, named ψ-SSA [13], which intro-
duces ψ instructions to represent predicated code un-
der SSA. In brief, ψ instructions introduce constraints
similar to 2-operands constraints, and are handled in
our algorithm in a special pass where they are con-
verted into a “ψ-conventional” SSA form.

In the following, VALcc1 and VALcc2 refer to the
same set of C functions compiled into LAI code with
two different ST120 C compilers. This set includes
about 40 small functions with some basic digital signal
processing kernels, integer Discrete Cosine Transform,
sorting, searching, and string searching algorithms. The
benchmarks example1-8 are small examples written in
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LAI code specifically for the experiment. LAI Large is
a set of larger functions, most of which come from the
efr 5.1.0 vocoder from the ETSI [6]. Finally, SPECint
refers to the SPEC CINT2000 benchmark [12].

To show the superiority of our approach, we have
implemented the following algorithms:

[Leung] The algorithm of Leung and George con-
tains the collect, and the mark-reconstruct (say out-
of-pinned-SSA) phases. For some reasons given fur-
ther, the collect phase has been split into three parts,
namely pinningSP (collect constraints related to the
dedicated register SP), pinningABI (collect remain-
ing renaming constraints) and pinningφ (our algo-
rithm). Each of these pinning phases can be activated
or not, independently.

[Sreedhar] The algorithm of Sreedhar et al. has
been implemented with an additional pass, namely
pinningCSSA. The pinningCSSA phase pins all the
operands of a φ to a same resource, and allows the out-
of-pinned-SSA phase to be used as an out-of-CSSA al-
gorithm.

[NaiveABI] is an algorithm that adds when nec-
essary move instructions locally around renaming con-
strained instructions. This pass can be used when the
pinningABI pass has not been activated.

[Coalescing] Finally, we have implemented a re-
peated register coalescer [5]. As for the iterated regis-
ter coalescer it is a conservative coalescer when used
during the register allocation phase. But, outside of
the register allocation context like here, it is an aggres-
sive coalescing that does not take care of the colorabil-
ity of the interference graph.

As already mentioned in Section 2.2, coalescing vari-
ables constrained by a dedicated register like the SP
register can generate incorrect code. Similarly, split-
ting the SSA web of such variables poses some prob-
lems. Hence, it was not possible to ignore those re-
naming constraints during the out-of-SSA phase and
to treat them afterwards. That explains the differen-
tiation we made between pinningSP and pinningABI
passes: we choose to always execute pinningSP. Also,
we tried to modify the algorithm of Sreedhar et al. to
support SP register constraints. However, our imple-
mentation still performs some illegal variable splitting
on some codes: the final non-SSA code contains fewer
move instructions, but is incorrect. Such cases mainly
occurred with SPECint, and thus the SPECint figures
for the experiments including the algorithm of Sreedhar
et al. must be taken only as an optimistic approximation
of the number of move instructions.

Tables 2-5 compares the number of resulting move
instructions on the different out-of-SSA algorithms de-
tailed in Table 1. In particular, we illustrate here com-
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Sφ+C • • • • •
Lφ, ABI+C • • • • •

Sφ+LABI+C • • • • • •
LABI+C • • • •
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a
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C • • • •
Lφ,ABI • • • •

Sφ • • • • •

T
a
b
le

4

LABI • • •

Table 1. Details of implemented versions

parisons [CC1-3] and [CS1-3] exposed in Section 4.
In the tables, values with + or - are always relative to
the first column of the table.
Comparison without ABI constraints Table 2
compares different approaches when renaming con-
straints are ignored. As explained above only non-
SP register related constraints, which we improperly
call ABI constraints, could been ignored in practice.
Columns Sφ+C vs Lφ+C illustrate points [CS1-2].
Columns C vs Lφ+C illustrate points [CC1-2]. Point
[CC1] is also illustrated by Sφ+C vs C. In those exper-
iments, our algorithm is better or equal in all cases, ex-
cept for the SPECint benchmark with the algorithm of
Sreedhar et al.. But Sφ+C are optimistic results as ex-
plained before. It shows the superiority of our approach
in the absence of ABI constraints.

benchmark Lφ + C C Sφ+C

VALcc1 193 +59 +3
VALcc2 170 +44 +13

example1-8 14 +3 +3
LAI Large 438 +44 +48
SPECint 6803 +3135 -59

Table 2. Comparison of move instruction count with
no ABI constraint.

Comparison with renaming constraints Table 3
shows the variation in the number of move instruc-
tions of various out-of-SSA register coalescing algo-
rithms, when all renaming constraints are taken into
account. Comparison of Sφ+LABI+C and LABI+C vs
Lφ,ABI+C confirms points [CS3]. Column C shows
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the importance of treating the ABI with the algorithm
of Leung et al.: many move instructions could not be
removed by the dead code and aggressive coalescing
phases. Our algorithm leads to less move instructions
in all cases which shows the superiority of our approach
with renaming constraints.

benchmark Lφ,ABI+C Sφ+LABI+C LABI+C C

VALcc1 242 +7 +3 +386
VALcc2 220 +15 +29 +449

example1-8 15 +3 +3 +18
LAI Large 1085 +26 +62 +634
SPECint 23930 +413 +482 +38623

Table 3. Comparison of move instruction count with
renaming constraints.

Compilation time Repeated register coalescing is
an expensive optimization phase in terms of time and
space; its complexity is proportional to the number of
move instructions in the program. Almost all coalesc-
ings are handled by our algorithm during the out of
SSA translation. As explained in [2] the creation and
the maintenance of the interference graph is highly sim-
plified under the SSA form. Hence, as mentioned in
Point [CC3], the more move instructions are handled
at the SSA level, the lower is the compilation time for
the overall coalescing. Table 4 gives an evaluation of the
number of move instructions that would remain after
the out-of-SSA phase if only naive techniques were ap-
plied for the φ replacement (which we denote φ moves)
and for the renaming constraints treatment (which we
improperly call ABI moves). Hence, it gives an evalua-
tion of the cost of running a repeated register coalesc-
ing after one simple SSA rename back phase. We did
not provide timing figures for the overall out-of-SSA
and register coalescing phase for the different experi-
ments because our implementation is too experimental
and not optimized enough to give usable results.

benchmark Lφ,ABI Sφ LABI

ABI moves φ moves

VALcc1 277 +593 +690
VALcc2 245 +926 +749

example1-8 16 +38 +34
LAI Large 1447 +4543 +6161
SPECint 36882 +249481 +260095

Table 4. Order of magnitude.

benchmark base depth opt pess

VALcc1 1109 +1 +4 +1484
VALcc2 877 +1 +8 +1716

example1-8 32 +0 +0 +4
LAI Large 17594 +60 +7 +22116
SPECint 1652065 -1798 +7258 +3038712

Table 5. Weighted count of move instructions on vari-
ants of our algorithm.

Variations on our algorithm Table 5 com-
pares small variations in the implementation of our al-
gorithm. The base column reports weighted move
count, where move instructions are given a weight
equal to 5d, d being the nesting level, i.e. depth,
of the loop the move belongs to. 5d is an arbi-
trary weight that corresponds to a static approxima-
tion where each loop would contain 5 iterations.

Our first variation (depth) is based on the simple re-
mark that in our initial implementation we prioritized
the φ instructions according to their depth, instead of
the depth of the move instructions they will generate.
For this variation, we use a new Create affinity graph
procedure (Algorithm 3) with a depth constraint that
calls Program pinning with decreasing depth. This leads
to a very small improvement on SPECint and a small
degradation for LAI Large. This result confirms the ob-
servation we made that affinity and interference graphs
are not complex enough to motivate a global optimiza-
tion scheme.

Algorithm 3 Construction of initial affinity graph
with a depth constraint.
Create affinity graph(CFG Node current node,

Integer depth)
(E,V ) = (∅, ∅)
for each X = φ(x1, . . . , xn) of current node

V = V
⋃{Resource def(X)}

for each x ∈ {x1, . . . , xn}
let Node x: x = . . .
if depth(Node x) �=depth

continue
V = V

⋃{Resource def(x)}
e = (Resource def(X), Resource def(x))
if (e �∈ E) multiplicity(e)=0
E = E

⋃{e}, multiplicity(e)++
return G = (E, V )

Our second (opt) and third (pess) variations use
fuzzy definitions of interferences, respectively opti-
mistic and pessimistic (Algorithm 4). It is interesting
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to note that optimistic interferences only incur a rela-
tively small increase in the number of move instructions
while significantly reducing the complexity of the com-
putation of the interference graph.

Algorithm 4 Optimistic and pessimistic definition of
interferences.
Variable kills optimistic(Variable a, Variable b)
let Node a: (Def a) a = . . .
let Node b: (Def b) b = . . .
if (a �= b) and (Def b dominates Def a) and

(b ∈ liveout(Node a))
return true {Case 1}

if a is defined as a = φ(a1 : B1, . . . , an : Bn)
for i = 1 to n

if b is live out of Bi and b �= ai

return true {Case 2}
return false

Variable kills pessimistic(Variable a, Variable b)
let Node a: (Def a) a = . . .
let Node b: (Def b) b = . . .
if (a �= b) and (Def b dominates Def a) and

((b ∈ livein(Node a)) or (Node a = Node b))
return true {Case 1}

if a is defined as a = φ(a1 : B1, . . . , an : Bn)
for i = 1 to n

if b is live out of Bi and b �= ai

return true {Case 2}
return false

6. Conclusion

This paper presents a pinning-based solution to the
problem of register coalescing during the out-of-SSA
translation phase. We explain and demonstrate why
considering φ instruction replacement and renaming
constraints together results in an improved coalescing
of variables, thus reducing the number of move instruc-
tions before instruction scheduling and register alloca-
tion. We show the superiority of our approach both in
terms of compile time and number of copies compared
to solutions composed of existing algorithms (Sreedhar
et al., Leung and George, Briggs et al., repeated regis-
ter coalescing). These experiments also show that the
affinity and interference graphs are usually quite sim-
ple, which means that a global optimization scheme
would bring very little improvement over our local ap-
proach. Finally, we implemented some small variations
of our algorithm, and observed that an optimistic im-
plementation of interferences, using live-range analy-
sis, still provides good results with a significant reduc-
tion in the complexity of the computation of the in-
terference graph. During this work, we also improved
slightly the mark and reconstruct phases of Leung and

George’s algorithm, which we rely on. A refined ver-
sion of this algorithm is provided in [10].
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