
IBM Research

March 21, 2005 CGO’05 Keynote © 2005 IBM Corporation

Virtual Machine Learning:
Thinking Like a Computer Architect

Michael Hind
IBM T.J. Watson Research Center

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation2

What is this talk about?

Virtual Machines?

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation3

What is this talk about?

Virtual Machines?

• YES!

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation4

What is this talk about?

Virtual Machines?

• YES!

Machine Learning?

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation5

What is this talk about?

Virtual Machines?

• YES!

Machine Learning?

• NO!

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation6

Outline

Why Performance Matters

Mathematicians and Gamblers

Are Today’s VM Gambling Now?

A Call for More Gambling

Other Issues and Conclusions

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation7

Developing Sophisticated Software

Software development is difficult

PL & SE innovations, such as
• Dynamic memory allocation, object-oriented programming, strong typing,

components, frameworks, design patterns, aspects, etc.

have helped enable the creation of large, sophisticated applications

Resulting in modern languages with many benefits
• Better abstractions & reduced programmer efforts
• Better (static and dynamic) error detection
• Significant reuse of libraries

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation8

The Catch

Implementing these features can pose performance challenges
• Dynamic memory allocation

– Need pointer knowledge to avoid conservative dependences
• Object-oriented programming

– Need efficient virtual dispatch, overcome small methods,
extra indirection

• Automatic memory management
– Need efficient allocation and garbage collection algorithms

• Runtime bindings
– Need to deal with unknown information

• . . .

Features require a rich runtime environment virtual machine

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation9

How Have We Done?

So far, so good …
• Today’s typical application on today’s hardware runs as fast as

1970s typical application on 1970s typical hardware
• Today’s application is much more sophisticated
• eg. Current IDEs perform compilation on every save

Where has the performance come from?
1. Processor technology, clock rates (X%)
2. Architecture design (Y%)
3. Software implementation (Z%)
X + Y + Z = 100%

• HW assignment: determine X, Y, and Z

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation10

Future Trends

Software development is still complex
• PL/SE innovation will continue to occur
• Trend towards more late binding, resulting in dynamic

requirements
• Will pose further performance challenges

Processor speed advances not as great as in the past (x << X?)
Computer architects providing multicore machines

• Will require software to utilize these resources
• Not clear if it will contribute more than in the past (y ? Y)

Software implementation must pick up the slack (z > Z)
• Because languages are becoming more dynamic,

dynamic/speculative approaches are needed

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation11

Type Safe, OO, VM-implemented Languages Are Mainstream

Java is ubiquitous
• eg. Hundreds of IBM products are written in Java

Virtualization is everywhere
• browsers, databases, binary translators, hypervisors, in hardware, etc.

Extreme dynamic languages are widespread and run on a VM
• eg. PHP, Perl, Python, etc.

These languages are not just for traditional applications
• Virtual Machine implementation, eg. Jikes RVM
• Operating Systems, eg. Singularity
• Real-time and embedded systems
• Massively parallel systems, eg. DARPA-supported efforts at IBM and Sun

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation12

Outline

Why Performance Matters

Mathematicians and Gamblers

Are Today’s VM Gambling Now?

A Call for More Gambling

Other Issues and Conclusions

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation13

Traditional Software Optimization

Proves properties of the program by analyzing its structure
• True for all executions

Performed by compiler prior to execution

“Mathematicians “
optimization based on proving properties

Picking lottery numbers by analyzing the structure of balls

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation14

Hardware Optimization

Speculates that the past will predict the future

Occurs at runtime
• No pre-execution analysis

Gamblers
optimization by speculating on runtime properties

Picking lottery numbers based on past results

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation15

Mathematicians vs Gamblers

“Mathematicians”
Compiler Optimizers

“Gamblers”
Hardware

•Pre-execution
•Proves properties
for all executions

•Occurs at Runtime
•Speculates based on
current execution

What about a JIT?
Occurs at runtime

Prove or speculate?

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation16

Mathematicians vs Gamblers

How

Prove

Speculate

When

Pre-execution at Runtime

Hardware
Optimization

Traditional
Software

Optimization

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation17

Outline

Why Performance Matters

Mathematicians and Gamblers

Are Today’s VM Gambling Now?

A Call for More Gambling

Other Issues and Conclusions

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation18

How Do Today’s VMs Achieve High Performance?

Efficient Memory Management
• Quick allocation performed in parallel
• Garbage collection performed in parallel, mostly concurrent w/ app

Efficient VM Services
• Synchronization, method/interface dispatch, etc.

Dynamic Compiler (“JIT”)
• . . .

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation19

What Is a JIT Compiler?

Code generation component of a virtual machine

Compilation is interspersed with program execution

Program compiled incrementally; unit of compilation is a method
• Compiler may never see the whole program
• Must modify traditional notions of IPA (Interprocedural Analysis)

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation20

Similar to a Traditional Compiler?

Build an IR, CFG, SSA, etc.

Contains all traditional optimizations
• SSA-based opts, graph coloring register allocation (HotSpot), etc.

Heavy use of inlining

Support multiple optimization levels

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation21

What’s the difference?

How the JIT is used!

To achieve high performance need full suite of optimizations
But overhead is too high

• Compile time == runtime!
Systems use selective optimization strategies

• Assume methods are unimportant until profile says otherwise
• Use interpreter or dumb compiler initially
• Use JIT for the subset of important methods
• eg. Self, HotSpot, IBM VMs, JRocket, ORP, Jikes RVM, etc.

Profiling is being used to determine what to compile, i.e., to avoid
the bad news of high overhead

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation22

But it is not all about avoiding bad news…

Because compilation occurs at runtime, profile information can
be used to guide heuristic-based optimizations

• Similar to offline profile-guided optimization
• Only requires 1 run!

Performed in many systems
• use branch profiles to infer basic block hotness

– Input to code layout, register allocation, loop unrolling, etc.

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation23

Mathematicians vs Gamblers

Pre-execution

When

How

Prove

Speculate

at Runtime

Hardware
Optimization

Traditional
Software

Optimization

Most
JIT

Optimization

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation24

Types of Optimization

1. Ahead of time optimization
• It is never incorrect, prove for every execution

2. Runtime static optimization
• Will not require invalidation

Ex. inlining of final or static methods

3. Speculative optimizations
Profile, speculate, invalidate if needed
Two flavors:
a) True now, but may change

Ex. Class hierarchy analysis-based inlining
b) True most of the time, but not always

Ex. Speculative inlining with invalidation mechanisms

JIT world does 2 & 3a, but not much of 3b

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation25

Outline

Why Performance Matters

Mathematicians and Gamblers

Are Today’s VM Gambling Now?

A Call for More Gambling

Other Issues and Conclusions

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation26

Speculative Approaches Are Common

Hardware/OS
• Caching, prefetching, scheduling, speculative HW, …

Within a VM
• Generational Garbage Collection

– Assume objects die young until proven otherwise
• Polymorphic Inline Caches for Virtual Method Invocation

– Assume call target will be the same as last time
• Synchronization

– Assume a lock won’t be contended
• Hashing

– Assume an object’s hashcode won’t be requested
• Selective Optimization

– Assume a method is not important

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation27

Why Aren’t Speculative Strategies Used More in a JIT?

Requires more infrastructure
• Mechanism to gather profile to speculate on
• Speculative strategy
• Invalidation mechanism

– Detect if speculation is wrong
– Correct previous strategy

• Introduces overhead and complexity

Most of JIT community are “Mathematicians”
• Dynamic compiler looks a lot like a static compiler

– Dynamic compiler writers look like static compiler writers
• Contrast this to dynamic binary optimizers

– Similar problem, but different community
– Much more gambling occurs!

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation28

Why Should VMs Be More Speculative?

Applications are being composed at runtime, limiting program
scope
Modern languages are more dynamic, difficult to model

• Pointers, virtual functions, dynamic class loading, scripting
languages

Unknown environment
• Architecture implementation details, unknown libraries

Can adapt to application’s dynamic behavior
Most of underlying system is already speculative

• Opportunity for better synergy?
A necessary step towards empirical optimization
Significant performance gain may be possible

Ex. Suganuma et al. ’02 says don’t use any static heuristics for inlining,
but instead rely on dynamic data

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation29

Example 1: Stack Allocation

Problem: OO languages encourage creation of many short-lived
“local” objects

Complex c = new Complex(3.4, 2.1);
foo(c);
. . .

Optimization: allocate these objects on the stack rather than the
heap (if legal)
- reduces pressure on garbage collector
- can improve data locality

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation30

Example 1: Approaches

Ahead of time static optimization
• Perform escape analysis of whole program
• Proves which objects cannot escape their stack frame
• Lots of papers, but doesn’t work for dynamic language like Java

Runtime static optimization
• Perform local escape analysis on this method (and inlined methods) to prove

it cannot escape
• Conservative assumptions for other calls

Speculative [Qian&Hendren’02]
1. Assume the object will not escape
2. Use write barriers to check to see if it does
3. Adjust and learn from result in the future

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation31

Example 2: Interprocedural Analysis

Problem: OO languages encourage small methods

Solution:
Construct a call graph that represents calling relation among
methods
Propagate method summary information along call graph
Avoid pessimistic assumptions at call sites

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation32

Example 2: Approaches

Ahead of time static optimization
• Analyze whole program, building a call graph and propagate
• Lots of papers, but doesn’t work for dynamic language like Java

Runtime static optimization [Hirzel et al’04]
• Capture information as methods are compiled
• Solve interprocedural problem when needed during execution

– eg. at GC time
– A form of incremental analysis

Speculative [Qian&Hendren’04]
1. Instrument calls to track actual targets, building dynamic call graph
2. Provides speculative interprocedural information to optimizations
3. May need to invalidate

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation33

Is Static Runtime Analysis a Bad Idea?

NO!!!

If something can be proven easily, then prove it
• Ex. Loop invariant code motion

However, a speculative approach provides other opportunities

Interesting Hybrid
• Combine static runtime with speculative [Hirzel et al’04]

– Capture information as methods are compiled
– But reflective code results are unpredictable
– Track actual values used in reflective calls and use them as

facts

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation34

Outline

Why Performance Matters

Mathematicians and Gamblers

Are Today’s VM Gambling Now?

A Call for More Gambling

Other Issues and Conclusions

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation35

Other VM Issues – Part 1

Language interoperability
• Applications in different managed languages?

– Single VM vs co-operative VMs
• Managed applications and native applications?

How many levels of virtualization do we need?
• Application server, OS, hypervisor, HW are all in the game
• Are they even aware of each other?

Security & Metadata

Reliable, Predictable, Usable
• Why do we have to specify a heap size?

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation36

Other VM Issues – Part 2

HW Interactions
• Do HW folks need us now?
• Return of HW VM, or co-designed VMs
• Better use of existing HW support in VMs
• What about phase detection?

– Hardware solutions are robust
– Software optimization tend to ignore issue, but have larger

scope

Dealing with the implementation complexity
• Layering, non-determinism, etc.
• Can we speculate without adding complexity?

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation37

Conclusions

VMs are mainstream and are growing in importance
• Get on board, or watch the train go by

SE demands and processor frequency scaling issues require
software optimization to deliver performance

Dynamic languages require dynamic optimization

Current JIT strategies are not gambling enough
• Speculative software optimization is ripe for research
• But, we need to deal with the complexity!

How can we encourage VM awareness in universities?

IBM Research

CGO’05 Keynote March 21, 2005 Virtual Machine Learning: Thinking Like a Computer Architect © 2005 IBM Corporation38

Appendix

Acknowledgements (ideas and inspiration)
Matt Arnold, Vas Bala, Bob Blainey, Perry Cheng, Stephen Fink,
Dave Grove, Martin Hirzel, Feng Qian, Jim Smith, Mark
Stoodley, Peter Sweeney, Mark Wegman, Ben Zorn, . . .
Future of VEE Workshop attendees

• 2.5 days of slides and video available
Brad Calder

Additional Resources (available on my web page)
• Survey paper on Adaptive Optimization in VMs, IEEE Proceedings,

Feb’05 by Arnold, Fink, Grove, Hind, Sweeney
• 3+ hour tutorial on Dynamic Compilation and Adaptive Optimization

VEE’05 Conference, June 11-12, Chicago

