
IBM Software Group, Compilation Technology

© 2006 IBM Corporation

Experiences with Multi-threading and Dynamic
Class Loading in a Java Just-In-Time Compiler

Daryl Maier, Pramod Ramarao, Mark Stoodley,
Vijay Sundaresan
TestaRossa JIT compiler team
IBM Toronto Laboratory

IBM Software Group

© 2006 IBM Corporation2 Compilation Technology

Outline

Overview of J9/TestaRossa
Brief overview of our paper
– Class loading/unloading
– Profiling in a multi-threaded environment
– Code patching

Focus on code patching
– Because it’s cool!

Summary

IBM Software Group

© 2006 IBM Corporation3 Compilation Technology

J9 virtual machine

High performance production Java VM from IBM
Java 1.4.2 and Java 5.0 compliant
Common code base for J2SE and J2ME products
Support on 12 different processor/OS platforms
Used in hundreds of IBM products including
– Websphere Application Server (WAS 6.x)
– Rational Application Developer (RAD)
– DB2
– XML parsers

IBM Software Group

© 2006 IBM Corporation4 Compilation Technology

TR (TestaRossa) JIT compiler

Just-In-Time (JIT) compiler for J9 VM

Fast startup time

Adaptive compilation : multiple optimization levels

Target ‘hot spots’ with higher opt level

Classical and Java-specific optimizations

Speculative optimizations
– Low overhead PDF (profiling) framework

– Code patching in many scenarios

IBM Software Group

© 2006 IBM Corporation5 Compilation Technology

Program characteristics

>> 10
8*
1
2
1
1
1
1

1

Number of threads
SPECjvm98

0383compress

11639
1098
429
404
431
537
378
523

Loaded Classes

Trade6
SPECjbb2000

jack
mtrt
mpegaudio
javac
db
jess

Benchmark

0

0

Unloaded Classes

0
0
0

0

341
0

- Middleware programs load order of magnitude more classes
- Memory leak: classes must be unloaded on an ongoing basis
- Lots of active threads executing tons of code: no method-level hotspots
- Target only jvm/jbb: ignore critical correctness/performance issues!

IBM Software Group

© 2006 IBM Corporation6 Compilation Technology

The One Page Paper Overview

Class loading and unloading
– Unloading a class requires significant clean-up

– Danger of class references materialized in the code

Profiling when there are a lot of threads
– Must ensure timely recompilation and good scalability

Code patching
– Resolution, efficient dispatch, recompilation, speculative

optimizations

– Tricky stuff

IBM Software Group

© 2006 IBM Corporation7 Compilation Technology

Code Patching Overview

Code patching scenarios, from easy to hard
1. All threads stopped (scalability suffers)

2. Single site, many active threads

3. Multiple sites, many active threads

Patch site alignment problems

Trade-offs impact designs on each platform
– e.g. number of PIC slots

IBM Software Group

© 2006 IBM Corporation8 Compilation Technology

Code Patching Example: Intel IA32 Field Resolution

82 00 00 00 000x803F 89 MOV dword [EDX+0], EAX

Instruction address Destination object
base register

Destination field displacement
(to be determined at runtime)

Source value

Store to unresolved field
– Field offset unknown at compile-time

When writing instruction, offset initialized to 0
– Opcode, operand bytes assume largest offset (4B)

IBM Software Group

© 2006 IBM Corporation9 Compilation Technology

Code Patching Example Cont…

Resolution by site-specific generated code
– Calls a VM function to resolve the field

82 00 00 00 000x803F 89 MOV dword [EDX+0], EAX

82 00 000x8185 89 00 00

Instruction bytes are copied to
a site-specific resolution code
out-of-line from the main
instruction sequence…

3B 01 00 00E8 00 CALL resolveField803F

DF 97 000x8180 E8 23

…and the original bytes are
overlaid with a 5-byte CALL
instruction that reaches the
site-specific resolution code

resolveField803F:

CALL resolveField

. . .

original instruction bytes

IBM Software Group

© 2006 IBM Corporation10 Compilation Technology

Code Patching Example Cont…

‘resolveField’ determines field offset at runtime

82 00 00 00 000x803F 89

82 01 000x8185 89 2C 00

3B 01 00 00E8 00

DF 97 000x8180 E8 23

resolveField803F:

. . .

field offset 0x12C

The call to the site specific
resolution code can now be
replaced with the 6 bytes from
the original instruction…

resolveField

IBM Software Group

© 2006 IBM Corporation11 Compilation Technology

Code Patching Example Cont…

BUT there’s a problem…
– Atomic updates needed to guarantee other threads execute

correct code
– X86 can only patch 2N bytes atomically: example needs 6B

Solution: atomically overlay a thread barrier (self loop)
– JMP -2 instruction for X86, similar on other platforms

Guarantee all processors observe barrier before patching
– Only one thread resolves the field
– MFENCE, CLFLUSH instructions for X86

IBM Software Group

© 2006 IBM Corporation12 Compilation Technology

Code Patching Example Cont…

82 00 00 00 000x803F 89

82 01 000x8185 89 2C 00

FE 01 00 00EB 00

DF 97 000x8180 E8 23

resolveField803F:

. . .

JMP -2 ; spin loop

Spin loop prevents other
threads from executing
instruction as its being
patched

Atomically inserted with
LOCK CMPXCHG
instruction followed by a
memory fence

If the CMPXCHG failed,
then branch to 0x803F:
another thread put in the
self-loop already

IBM Software Group

© 2006 IBM Corporation13 Compilation Technology

Code Patching Example Cont…

82 00 00 00 000x803F 89

82 01 000x8185 89 2C 00

FE 01 00 00EB 00

DF 97 000x8180 E8 23

resolveField803F:

. . .

Field offset copied into
original instruction (spin
loop still present)

01 002C 00
Followed by memory
fence

Finally, spin loop
removed with single 2-
byte write

8289

We’re done! …or are we?

IBM Software Group

© 2006 IBM Corporation14 Compilation Technology

Code Patching Example: Still not correct

Patched bytes can’t straddle patching boundary
– Not all instruction stores guaranteed to be atomically visible

– Patching boundary is address that can’t be straddled by code
locations being patched…empirically:

• 8-bytes on AMD K7 or K8 cores
• 32-bytes on Intel Pentium 3
• 64-bytes on Intel Pentium 4 and EM64T

Insert NOPs to align patchable instructions
– e.g. spin loop JMP-2 instruction can’t straddle patching boundary

– Increases code footprint by 1-2% on AMD: need more NOPs

– Extra NOPs can have surprising performance effects (!)

IBM Software Group

© 2006 IBM Corporation15 Compilation Technology

Code Patching Example Cont…

Single byte NOP inserted to align spin loop site
– Patching infrastructure otherwise unaffected

82 00 00 00 000x8040 89 MOV dword [EDX+0], EAX

0x803F 90 NOP

First two bytes no longer straddle a patching boundary

IBM Software Group

© 2006 IBM Corporation16 Compilation Technology

Code Patching On Other Architectures

pSeries
– Uniform instruction length
– Challenges:

• Multiple instructions required for immediate addresses

zSeries
– Variable instruction length
– Challenges:

• Overcoming I-cache coherence costs, efficiency of atomic
instructions

IBM Software Group

© 2006 IBM Corporation17 Compilation Technology

Summary

Middleware applications are highly multi-threaded
and load and unload LOTS of classes
– Implications for patching, profiling, optimization design

Our paper describes
– Class unloading pain

– Profiling correctly when lots of threads around

– Code patching trickiness

IBM Software Group

© 2006 IBM Corporation18 Compilation Technology

Backup Slides

IBM Software Group

© 2006 IBM Corporation19 Compilation Technology

Contributions of Our Paper

Highlight issues relevant in a production JIT
compiler running multi-threaded and/or large
applications
– Class loading and unloading
– Best code patching techniques vary by platform
– Low overhead profiling with multiple active threads

Describe our solutions to these problems

IBM Software Group

© 2006 IBM Corporation20 Compilation Technology

Class loading and CHTable
Class loading is not a ‘stop the world’ event
– Allows other Java threads to make progress while one thread loads

a class
– Allows compilation thread to compile while classes are being

loaded
JIT compiler maintains a class hierarchy table
– Superclass/interface relationships are updated
– Compensate for violated run time assumptions
– All updates performed after acquiring CHTable lock
– Compiler does not hold CHTable lock throughout a compilation
– Compile-time CHTable queries must acquire CHTable lock

IBM Software Group

© 2006 IBM Corporation21 Compilation Technology

Class loading and CHTable

JIT compiler optimizations using class hierarchy table
– Guarded devirtualization

• Conditionally convert virtual call to direct call
• Assumption is registered in the CHTable
• If assumption is violated, compensate at run time
• Patch code to execute the backup code (virtual call)

– Invariant argument pre-existence
• Devirtualize virtual calls using an invariant parameter as a receiver
• Re-compile the method containing devirtualized calls if assumption

is violated

Class hierarchy might have changed while a compilation was in progress
– Acquire CHTable lock just before binary code is generated
– Generate binary code
– Compensate for any assumptions violated during the compilation
– Release CHTable lock

IBM Software Group

© 2006 IBM Corporation22 Compilation Technology

Garbage collection and class unloading in the J9 VM
Class unloading : memory allocated for class is re-claimed and the
class ‘dies’
Class unloading done during garbage collection
Garbage collection is a ‘stop the world’ event in J9
– Co-operative model (Java threads execute ‘yield points’ to check if GC is

pending)
– Java classes are also objects on the heap and can therefore be collected

(and unloaded)
– Class objects are never ‘moved’, i.e. a class is always at the same address

throughout it’s lifetime

All classes in a class loader unloaded together
A class is unloaded when
– No objects of that class type are ‘live’ on the Java heap
– No loaded bytecodes explicitly refer to the class

IBM Software Group

© 2006 IBM Corporation23 Compilation Technology

Class unloading in the J9 VM

Impacts the JIT compiler significantly
– Class hierarchy table
– Profiling data
– Compilation issues
– Code memory reclamation
– Persistent data reclamation
– ‘Materialized’ references in generated code

IBM Software Group

© 2006 IBM Corporation24 Compilation Technology

Class unloading and ‘materialized’ references

Interface I { public void foo(); }

class C1 implements I

{

public void foo() { System.out.println(“In C1.foo”); }

}

class C2 implements I

{

public void foo() { System.out.println(“In C2.foo”); }

}

IBM Software Group

© 2006 IBM Corporation25 Compilation Technology

Class unloading and ‘materialized’ references
public I createC1orC2(int x) {

if (x % 2)

return new C1();

else

return new C2();

}

public void bar() {

x++;

I obj = this.createC1orC2(x);

obj.foo(); // Polymorphic interface call

}

IBM Software Group

© 2006 IBM Corporation26 Compilation Technology

Class unloading and ‘materialized’ references
De-virtualized interface call conditionally

public void bar() {

x++;

I obj = this.createC1orC2(x);

if (obj.class == C1) // ’materialized’ reference to C1

C1.foo(); // called with obj as the receiver object

else if (obj.class == C2) // ‘materialized’ reference to
C2

C2.foo(); // called with obj as the receiver object

else

obj.foo(); // Polymorphic interface call

}

IBM Software Group

© 2006 IBM Corporation27 Compilation Technology

Class unloading and ‘materialized’ references
After replacing ‘materialized’ reference when C1 is unloaded

public void bar() {

x++;

I obj = this.createC1orC2(x);

if (obj.class == -1) // ‘materialized’ reference to C1 changed

C1.foo(); // called with obj as the receiver object

else if (obj.class == C2) // ‘materialized’ reference to C2

C2.foo(); // called with obj as the receiver object

else

obj.foo(); // Polymorphic interface call

}

IBM Software Group

© 2006 IBM Corporation28 Compilation Technology

Class unloading and ‘materialized’ references

List of code locations containing ‘materialized’ references is
maintained for each class
Addition to the list is done both at compile time and at run time
Only add to the list if the class loader of ‘materialized’ class is
different from the class loader of some other class referred to
in the constant pool
– Compare with class loader of method being compiled
– Compare with class loader of super class/interface referred to in

the constant pool
Patching can be done without any race conditions because all
threads have yielded for a GC

IBM Software Group

© 2006 IBM Corporation29 Compilation Technology

Class unloading and CHTable

Remove unloaded classes from superclasses/interfaces in
CHTable
Grouping unloading requests avoids excessive traversals
over data structures
– Problematic scenario

• Interface I is implemented by N classes
• Each implemented class loaded by a different class loader (N

class loaders)
• Each class loader is unloaded and CHTable updates are

performed independently
• O(N2) to remove all implementors of I
• We have seen N ~ 10,000 in customer applications

IBM Software Group

© 2006 IBM Corporation30 Compilation Technology

Class unloading and compilation

Asynchronous compilation
– Java threads queue methods for compilation and continue

executing (in most cases)
Class containing a queued method could be unloaded before
it is actually compiled
– Solution : Walk the compilation queue every time a class is

unloaded and delete methods that belonging to the class
Class might be unloaded when a compilation is in progress
– Solution : Check if an unloaded class was used by the

compilation in any manner; if so, abort the compilation

IBM Software Group

© 2006 IBM Corporation31 Compilation Technology

Class unloading and profiling

– Minimize work at run time and instead, move work to compile time
as much as possible

– Profile data is for Java bytecodes that have been unloaded
• Raw data is generated while program runs
• Periodically, raw data is read and ‘processed’
• Bytecodes that generated raw data might have been unloaded
• Solution : purge all raw data when class unloading occurs
• What about ‘processed’ data for unloaded code ?
• Solution : maintain bytecode address range for unloaded code and avoid

returning information from compile-time queries for profiling
information for bytecodes in that range

– Profile data contains references to unloaded classes
• Keep track of unloaded classes’ addresses
• Avoid returning class whose address matched an unloaded class

– Alternatives
• Cleanse profiling data as unloading occurs (costly at run time ?)

IBM Software Group

© 2006 IBM Corporation32 Compilation Technology

Class unloading and memory reclamation

Common tasks like serialization sometimes create class
loaders with short lifetimes
Unbounded memory increase over time (server applications
can run for days)
Re-claim code and data memory for compiled method(s) in
unloaded class
Problem : Might involve expensive searches each time at
run time
Solution : Maintain per-class loader information about
compiled methods and persistent data
– Example : check if ‘any’ method belonging to an unloaded

class loader was compiled

IBM Software Group

© 2006 IBM Corporation33 Compilation Technology

Profiling

When is profiling done
– Profile methods deemed to be ‘hot’ based on sampling

When a method is chosen to be profiled
– Compile the method with embedded profiling code
– Execute the method body for a while collecting data
– Recompile the method using profiling data

IBM Software Group

© 2006 IBM Corporation34 Compilation Technology

Profiling in the TR JIT

Loosely based on Jikes RVM approach
– Arnold et al (PLDI 2001)

Compiler creates a clone of the method to be profiled
– Clone contains the profiling code

Transition paths at equivalent points allow flow of control
between two bodies
– Original method body executes more frequently

IBM Software Group

© 2006 IBM Corporation35 Compilation Technology

Profiling in the TR JIT (cont…)

Profiling approach

– Every M execution paths in the non-profiled version,
transition to profiled version

– Execute one execution path in the profiled version and
transition back to non-profiled version

– Do these steps N times
‘M’ is the profiling PERIOD

– 19, 29, 47… (increasing number of back edges)
‘N’ is the profiling COUNT

– 100, 625, 1250, 2500 … (increasing number of back edges)

IBM Software Group

© 2006 IBM Corporation36 Compilation Technology

Preliminaries

“Async checks”
– Inserted at each loop back edge to test if thread needs to

yield to GC
– Profiler uses async checks to mark loop back edges
“Execution Path”
– Starts at method entry or an async check
– Ends at method entry or an async check
After one execution path is completed in profiled version,
return to non-profiled version
– Ensures execution is not stuck in a loop in profiled version

IBM Software Group

© 2006 IBM Corporation37 Compilation Technology

Preliminaries (cont…)

Execution Path

1->2->6

6->3->5

5->4->5

6->7…->1

5->6

1

2

3

4

5

6

7

IBM Software Group

© 2006 IBM Corporation38 Compilation Technology

Profiling Transitions

1

2

3

4

5

6

7

Non-profiled

1

2

3

4

5

6

7

Profiled

IBM Software Group

© 2006 IBM Corporation39 Compilation Technology

Profiling Transitions (cont…)
METHOD ENTRY

if (recompCounter < 0)
RECOMPILE

N1:
…program code…

asyncChk

P2:
…program code…

profilingCount < 0

profilingPeriod--

True

asyncChk
TrueprofilingPeriod < 0

P1:
profilingPeriod = PERIOD

profilingCount--

TrueprofilingCount > 0

recompCounter--
profilingPeriod = MAXINT

goto N1

clone

clo
ne

IBM Software Group

© 2006 IBM Corporation40 Compilation Technology

Effects of Multi-threading

Recompilation may not occur for a long time

profilingCount < 0

profilingPeriod--

recompCounter--
profilingPeriod = MAXINT……

……

Thread3

Thread2

Thread1

Initially

Thread1: count = 0 period = MAXINT

Thread2: period--

Thread3: at method entry

IBM Software Group

© 2006 IBM Corporation41 Compilation Technology

Thread Interaction

profilingCount < 0

profilingPeriod--

recompCounter--
profilingPeriod = MAXINT……

……

Thread3

Thread2

Thread1

Thread1: read period (MAXINT)
Thread1:

count = 0 period = MAXINTThread1:

period-- => period = MAXINT-1

Thread3: set initial values

count = 29 period = 625

count = 29 period = MAXINT-1
transition won’t occur for a long time!

IBM Software Group

© 2006 IBM Corporation42 Compilation Technology

Effects of Multi-threading

Poor scalability with increasing number of threads
– Multiple threads could transition to profiling code
– Possibility of threads manipulating ‘period’ multiple times
– Guarantee of profiling path being executed once every

PERIOD paths no longer true
Imprecision in basic block profiling counts
– Multiple threads may manipulate basic block counts
– Basic block counts may no longer reflect the hotness of an

execution path

IBM Software Group

© 2006 IBM Corporation43 Compilation Technology

Profiling in the TR JIT

To improve scalability, use synchronization to access global
‘period’ and ‘count’ variables
At Method Entry
– Synchronization is used to read global variables into

thread-local storage
– Basic block counters are also thread-local
At Method Exit
– Global variables are updated from thread-local storage at

each method exit under synchronization
Adds overhead
– Each thread has now to allocate extra storage
– Two locking operations introduce runtime overhead

IBM Software Group

© 2006 IBM Corporation44 Compilation Technology

Results

Statistics of stack usage and runtime overhead of
synchronization in profiled methods
– Only period and count variables are allocated as thread-

local
– All counters are allocated as thread-local (including basic

block counts)

Average stack usage increase was 14.7% across
SPECjvm98 and SPECJbb2000

Runtime overhead was negligible

IBM Software Group

© 2006 IBM Corporation45 Compilation Technology

Stack usage

Benchmarks Base Counts Profiling count and period only All global variables
NumSlots % Increase NumSlots % Increase

_201_compress 81 87 7.4 348 329.7
_202_jess 100 105 5.0 832 732.0
_209_db 50 58 16.0 260 420.0
_213_javac 258 293 13.5 2462 854.2
_222_mpegaudio 111 121 9.0 311 180.2
_227_mtrt 99 112 13.1 763 670.7
_228_jack 148 211 42.5 1462 887.8
SPECjbb2000 183 203 10.9 954 421.3
Average 14.7 562

IBM Software Group

© 2006 IBM Corporation46 Compilation Technology

Results (cont…)
• Only _202_jess shows some overhead

• Contains many small methods that get profiled

• Runtime overhead in the two multi-threaded benchmarks were negligible

0
20
40
60
80

100
120
140
160
180
200

_2
01

_c
om

pre
ss

_2

02
_je

ss
_2

09
_d

b
_2

13
_ja

va
c

_2
22

_m
pe

ga
ud

io
_2

27
_m

trt
_2

28
_ja

ck

SPECjbb2
00

0
Tra

de
6

O
ve

rh
ea

d
% Profiling count and period

only
All global variables

