
GPU Computing
Programming a Massively Parallel Processor

CGO-5
Ian Buck

© NVIDIA Corporation 2007

Lush, Rich WorldsStunning Graphics Realism

Core of the Definitive Gaming PlatformIncredible Physics Effects

Hellgate: London © 2005-2006 Flagship Studios, Inc. Licensed by NAMCO BANDAI Games America, Inc.

Crysis © 2006 Crytek / Electronic Arts

Full Spectrum Warrior: Ten Hammers © 2006 Pandemic Studios, LLC. All rights reserved. © 2006 THQ
Inc. All rights reserved.

© NVIDIA Corporation 2007

GPUs: Graphics Processing Units

Programmable Units also called traditionally as
shader units. (e.g. Vertex processor, Pixel
processor)

As with any programmable processor, these need to
be programmed and compiled efficiently for
performance.

© NVIDIA Corporation 2007

Graphics = Programmability

TodayTodayProgrammable Graphics Today Programmable Graphics Today

© NVIDIA Corporation 2007

© NVIDIA Corporation 2007

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

GeForce 8800
Build the architecture around the processor

© NVIDIA Corporation 2007

Next step: Expose the GPU as massively parallel
processors

GeForce 8800 GPU Computing

Global Memory

Thread Execution Manager

Input Assembler

Host

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store

Thread Processors Thread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread Processors

© NVIDIA Corporation 2007

Outline

CUDA & GPU Computing
Compiling CUDA
NVIDIA compiler challenges
Research opportunities

GPU Computing Model

© NVIDIA Corporation 2007

Thread Programs

Thread Program

Global Memory

Parallel Data Cache

Thread Number

Features
Hardware provided thread id
Millions of instructions
Complete ISA
Fully general load/store

© NVIDIA Corporation 2007

Thread Programs

Thread Program

Global Memory

Parallel Data Cache

Thread Number

Parallel Data Cache
Dedicated on-chip memory
Shared between threads for
inter-thread communication
Explicitly managed –
software managed cache
As Fast Registers

© NVIDIA Corporation 2007

Parallel Data Cache

Parallel execution through cache

Parallel
Data

Cache

Thread
Execution
Manager

ALU

Control

ALU

Control

ALU

Control

ALU

DRAM

P1
P2
P3
P4
P5

Shared
Data

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Bring the data closer to the ALU
• Stage computation for the parallel

data cache

• Minimize trips to external memory

• Share values to minimize overfetch
and computation

• Increases arithmetic intensity by
keeping data close to the processors

Addresses a fundamental problem of
stream computing

© NVIDIA Corporation 2007

GeForce 8800 GTX Graphics Board

128Multi-
Processors

575MHzCore

1350MHzShader

900MHzMemory

768MB GDDR3Memory

$599 e$599 e--tailtail

© NVIDIA Corporation 2007

Thread Processor

128, 1.35 GHz processors

16KB Parallel Data Cache
per cluster

Scalar architecture

IEEE 754 Precision

Full featured instruction set
Parallel Data Cache

Thread Processors

Parallel Data
Cache

© NVIDIA Corporation 2007

A Massively Parallel Coprocessor

The GPU is viewed as a compute device that:
Is a coprocessor to the CPU or host
Has its own DRAM (device memory)
Runs 1000’s of threads in parallel

Data-parallel portions of an application execute on the device
as kernels which run many cooperative threads in parallel

Differences between GPU and CPU threads
GPU threads are extremely lightweight

Very little creation overhead
GPU needs 1000s of threads for full efficiency

Multi-core CPU needs only a few
Threads are non-persistent

Run and exit

© NVIDIA Corporation 2007

CPU / GPU Parallelism

Moore’s Law gives you more and more transistors
What do want to do with them?

CPU Strategy: Make the workload (one compute thread) run as
fast as possible

Tactics
Cache (area limiting
Instruction/Data Prefetch
“hyperthreading”
Speculative Execution

limited by “perimeter” – communication bandwidth
...then add task parallelism... Multi-core

GPU Strategy: Make the workload (as many threads as
possible) run as fast as possible

Tactics
Parallelism (1000s of threads)
Pipelining

limited by “area” – compute capability

GPU Computing: Compiling

© NVIDIA Corporation 2007

CUDA: C on the GPU

A simple, explicit programming language solution
Extend only where necessary

__global__ void KernelFunc(...);

__shared__ int SharedVar;

KernelFunc<<< 500, 128 >>>(...);

Explicit GPU memory allocation
cudaMalloc(), cudaFree()

Memory copy from host to device, etc.
cudaMemcpy(), cudaMemcpy2D(), ...

© NVIDIA Corporation 2007

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX Code

CPU Code

© NVIDIA Corporation 2007

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX Code Virtual

Physical

© NVIDIA Corporation 2007

NVCC & PTX Virtual Machine

EDG
Separate GPU vs. CPU code

Open64
Generates GPU PTX
assembly

Parallel Thread eXecution
(PTX)

Virtual Machine and ISA
Programming model
Execution resources and
state

EDG

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;

© NVIDIA Corporation 2007

Role of Open64

Open64 compiler gives us

A complete C/C++ compiler framework. More futuristic
looking. We do not need to add infrastructure framework as
our hardware arch advances over time.

A good collection of high level architecture independent
optimizations. All GPU code is in the inner loop.

Compiler infrastructure that interacts well with other
standardized related tools.

© NVIDIA Corporation 2007

Virtual to Physical ISA translation

PTX to Target
Compiler

G80 … GPU

Target code

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

0x103c8009 0x0fffffff
0xd00e0609 0xa0c00780
0x100c8009 0x00000003
0x21000409 0x07800780

NVIDIA developed GPU
backend compiler

Leveraged by all NVIDIA
products

Target specific optimizing
ISA diffences
Resource allocation
Performance

© NVIDIA Corporation 2007

Challenges for PTX compilation

Runtime code generation has
stringent compile-time and memory constraints
but since each program is a innermost kernel (think of
1600X1200 doubly nested loop outside each program),
performance optimizations are critical.
Allow pre-compiled target GPU binaries.

Criteria that affect performance can be different
from traditional compilers. So, some of the
problems are not addressed well in literature.

Architecture changes and capability changes occur
frequently, so compiler framework has to be flexible
in addition to being optimal and efficient.

© NVIDIA Corporation 2007

Challenge: Resource Pressure =
Performance

Using more registers hinders parallelism, using
spills is extremely slow. Need to use minimal
number of registers.

Some architectures were VLIW and required lot of
ILP (instruction level parallelism) for perf. Combined
with constraints on registers, the problem is
extremely challenging.

Batching memory access for performance reasons.
Again, combined with constraints of registers, this
problem is very challenging.

© NVIDIA Corporation 2007

Challenges Continued

Competing optimizers
Open64 lifting code from loops increases register
pressure.

Synchronization across control flow within
programs.

Phase ordering of transformations and
optimizations is a continual concern.

© NVIDIA Corporation 2007

CUDA Performance Advantages

Performance:

BLAS1: 60+ GB/sec

BLAS3: 100+ GFLOPS

FFT: 52 benchFFT* GFLOPS

FDTD: 1.2 Gcells/sec

SSEARCH: 5.2 Gcells/sec

Black Scholes: 4.7 GOptions/sec

How:

Leveraging the parallel data cache

GPU memory bandwidth

GPU GFLOPS performance

Custom hardware intrinsics
__sinf, __cosf, __expf, __logf, ...

*GFLOPS as defined by http://www.fftw.org/benchfft

All benchmarks are compiled code!

© NVIDIA Corporation 2007

Research Opportunities

GPU Computing a new architecture with new
opportunities for compiler research and innovation

What NVIDIA provides
Explicit C/C++ compilation tool chain
PTX assembly specification
PTX enabled Open64 sources
$599 supercomputer at Fry’s

© NVIDIA Corporation 2007

Research Opportunities

Considering variable-sized resources in optimizers
Registers
Shared memory
Threads

Data parallel languages
Functional
Array Based
Domain Specific

Blocking in massively parallel applications
Compiler control over parallel data cache for blocking
Discovering thread block size

GPU Onload
Discovering portions of CPU code to “onload” to GPU

© NVIDIA Corporation 2007

Research Opportunities

Rethinking recompilation
Cheaper to recompute than save-restore
“FLOPS are Free” computing

Compiling for the memory hierarchy
“Bandwidth is expensive”

Education
Where are the worlds parallel programmers?

© NVIDIA Corporation 2007

Future

GPUs are already at where CPU are going
CPU today = 8 cores
GeForce 8800 = 128 cores

Task parallelism is short lived...
Data parallel is the future

Express a problem as data parallel....
Maps automatically to a scalable architecture

CUDA provides an insight into a data parallel future

