al VAl LR,

GPU Computing

Programming a Massively Parallel Processor
CGO-5
lan Buck

Stunning Graphics Realism Lush, Rich Worlds >
A

NVIDIA

Crysis © 2006 Crytek / Electronic Arts

Incredible Physics Effects Core of the Definitive Gaming Platform

Hellgate: London © 2005-2006 Flagship Studios, Inc. Licensed by NAMCO BANDAI Games America, Inc. Full Spectrum Warrior: Ten Hammers © 2006 Pandemic Studios, LLC. All rights reserved. © 2006 THQ

Inc. All rights reserved. © NVIDIA Corporation 2007

o

NVIDIA

GPUs: Graphics Processing Units

® Programmable Units also called traditionally as
shader units. (e.g. Vertex processor, Pixel
processor)

® As with any programmable processor, these need to
be programmed and compiled efficiently for
performance.

© NVIDIA Corporation 2007

GeForce 8800 <3

NVIDIA
® Build the architecture around the processor

Input Asembler Setup / Rstr / ZCull

Vtx Thread Issue Geom Thread Issue

v

S
o
0
0
o
o
o
S
o
©
©
Qo
S
e
-

© NVIDIA Corporation 2007

GeForce 8800 GPU Computing <3

NVIDIA
® Next step: Expose the GPU as massively parallel
processors

Input Assembler

Thread Execution Manager p,

Load/store

Global Memory

© NVIDIA Corporation 2007

Outline <X

NVIDIA

® CUDA & GPU Computing

® Compiling CUDA

® NVIDIA compiler challenges
® Research opportunities

© NVIDIA Corporation 2007

YA A

GPU Computing Model

<3

NVIDIA

Thread Programs

Thread Number

Parallel Data Cache

Thread Program Features
® Hardware provided thread id

® Millions of instructions

® Complete ISA

I ® Fully general load/store
Global Memory

© NVIDIA Corporation 2007

o

NVIDIA

Thread Programs

Thread Number

Parallel Data Cache

Thread Program Parallel Data Cache
® Dedicated on-chip memory

® Shared between threads for
inter-thread communication

I ® Explicitly managed —
software managed cache
® As Fast Registers

Global Memory

© NVIDIA Corporation 2007

Parallel Data Cache

Execution

Bring the data closer to the ALU Manager

® Stage computation for the parallel
data cache

® Minimize trips to external memory

® Share values to minimize overfetch
and computation

® Increases arithmetic intensity by
keeping data close to the processors

Addresses a fundamental problem of
stream computing

>

NVIDIA

Parallel execution through cache

© NVIDIA Corporation 2007

GeForce 8800 GTX Graphics Board <3

NVIDIA

$599 e-tail

Core

575MHz

Multi-
Processors

128

Shader

1350MHz

Memory

900MHz

Memory

/68MB GDDR3

© NVIDIA Corporation 2007

Thread Processor <X
RAYA >] VA

® 128, 1.35 GHz processors
Thread Processors ® 16KB Parallel Data Cache

4 ya ya ya 4 a /.

per cluster

mmmm| ‘ Iluhhjlurululu‘ ® Scalar architecture

Parallel Data [. IEEE 754 Precision

Cache

~ Parallel Data Cache : :
® Full featured instruction set

© NVIDIA Corporation 2007

A Massively Parallel Coprocessor 622
NVIDIA

® The GPU is viewed as a compute device that:
® |Is a coprocessor to the CPU or host
® Has its own DRAM (device memory)
® Runs 1000’s of threads in parallel

® Data-parallel portions of an application execute on the device
as kernels which run many cooperative threads in parallel

® Differences between GPU and CPU threads

® GPU threads are extremely lightweight
® Very little creation overhead

® GPU needs 1000s of threads for full efficiency
® Multi-core CPU needs only a few

® Threads are non-persistent
€ Run and exit

© NVIDIA Corporation 2007

CPU / GPU Parallelism <N

NVIDIA

Moore’s Law gives you more and more transistors

® What do want to do with them?
CPU Strategy: Make the workload (one compute thread) run as
fast as possible

® Tactics

Cache (area limiting
Instruction/Data Prefetch

“hyperthreading”

Speculative Execution

-> limited by “perimeter” — communication bandwidth
...then add task parallelism... Multi-core

GPU Strategy: Make the workload (as many threads as
possible) run as fast as possible

® Tactics

® Parallelism (1000s of threads)
® Pipelining
® - limited by “area” — compute capability

© NVIDIA Corporation 2007

YA A

GPU Computing: Compiling

CUDA: C on the GPU <X

NVIDIA

® A simple, explicit programming language solution
® Extend only where necessary

__global _ void Kernel Func(...);

_shared__ int SharedVar;

Ker nel Func<<< 500, 128 >>>(...);

Explicit GPU memory allocation
® cudaMal | oc(), cudaFree()

Memory copy from host to device, etc.

® cudaMentpy(), cudaMentpy2l(), ..

© NVIDIA Corporation 2007

Compiling CUDA <3

NVIDIA

C/C++ CUDA
Application

CPU Code

PTX Code

PTX to Target
Compiler

Target code

© NVIDIA Corporation 2007

Compiling CUDA <X

NVIDIA

C/C++ CUDA
Application

PTX Code Virtual

PTX to Targe
Compiler

© NVIDIA Corporation 2007

NVCC & PTX Virtual Machine

NVIDIA

float4 me = gx[gtid];

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

1d.global.v4.f32
mad. 32

{$f1,$13,$f5,8f7},

$f1, $f5, $f3, $f1;

me.xX += me.y * me.z;

® EDG
® Separate GPU vs. CPU code
® Open64

® Generates GPU PTX
assembly

® Parallel Thread eXecution
(PTX)

® Virtual Machine and ISA
® Programming model

® Execution resources and
state

[$r9+0];

© NVIDIA Corporation 2007

Role of Open64 <X

NVIDIA

Open64 compiler gives us

® A complete C/C++ compiler framework. More futuristic
looking. We do not need to add infrastructure framework as
our hardware arch advances over time.

® A good collection of high level architecture independent
optimizations. All GPU code is in the inner loop.

® Compiler infrastructure that interacts well with other
standardized related tools.

© NVIDIA Corporation 2007

Virtual to Physical ISA translation 4

1d.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

® NVIDIA developed GPU
backend compiler

® Leveraged by all NVIDIA

products
pTCx to T_alrget ® Target specific optimizing
ompiier ® |ISA diffences

PTX Code

Resource allocation
Performance

Target code

0x103c8009 OXOfffffff
0xd00e0609 0xa0c00780
0x100c8009 0x00000003
0x21000409 0x07800780

© NVIDIA Corporation 2007

Challenges for PTX compilation

® Runtime code generation has
® stringent compile-time and memory constraints

® but since each program is a innermost kernel (think of
1600X1200 doubly nested loop outside each program),
performance optimizations are critical.

® Allow pre-compiled target GPU binaries.

® Criteria that affect performance can be different
from traditional compilers. So, some of the
problems are not addressed well in literature.

® Architecture changes and capability changes occur

frequently, so compiler framework has to be flexible
in addition to being optimal and efficient.

© NVIDIA Corporation 2007

<3

NVIDIA

Challenge: Resource Pressure =
Performance

® Using more registers hinders parallelism, using
spills is extremely slow. Need to use minimal
number of registers.

® Some architectures were VLIW and required lot of
ILP (instruction level parallelism) for perf. Combined
with constraints on registers, the problem is
extremely challenging.

® Batching memory access for performance reasons.
Again, combined with constraints of registers, this
problem is very challenging.

© NVIDIA Corporation 2007

NVIDIA

Challenges Continued

® Competing optimizers

® Open64 lifting code from loops increases register
pressure.

® Synchronization across control flow within
programs.

® Phase ordering of transformations and
optimizations is a continual concern.

© NVIDIA Corporation 2007

<3

NVIDIA

CUDA Performance Advantages

Performance: How:

® BLAS1: 60+ GB/sec ® Leveraging the parallel data cache
® BLAS3: 100+ GFLOPS ® GPU memory bandwidth

® FFT: 52 benchFFT* GFLOPS ® GPU GFLOPS performance

® FDTD: 1.2 Gcells/sec ® Custom hardware intrinsics

® SSEARCH: 5.2 Gcells/sec ® _ sinf, __cosf, __expf, __lodf, ...
® Black Scholes: 4.7 GOptions/sec

All benchmarks are compiled code!

*GFLOPS as defined by http://www.fftw.org/benchfft

© NVIDIA Corporation 2007

<3

NVIDIA

Research Opportunities

® GPU Computing a new architecture with new
opportunities for compiler research and innovation

® What NVIDIA provides

Explicit C/C++ compilation tool chain
PTX assembly specification

PTX enabled Open64 sources

$599 supercomputer at Fry’s

© NVIDIA Corporation 2007

<3

NVIDIA

Research Opportunities

® Considering variable-sized resources in optimizers
® Registers
® Shared memory
® Threads

® Data parallel languages

® Functional
® Array Based
® Domain Specific

® Blocking in massively parallel applications
® Compiler control over parallel data cache for blocking
® Discovering thread block size

® GPU Onload
® Discovering portions of CPU code to “onload” to GPU

© NVIDIA Corporation 2007

<3

NVIDIA

Research Opportunities

® Rethinking recompilation
® Cheaper to recompute than save-restore
® “FLOPS are Free” computing

® Compiling for the memory hierarchy
® “Bandwidth is expensive”

® Education
® Where are the worlds parallel programmers?

© NVIDIA Corporation 2007

<3

NVIDIA

Future

® GPUs are already at where CPU are going
® CPU today = 8 cores
® GeForce 8800 = 128 cores

® Task parallelism is short lived...
® Data parallel is the future

® Express a problem as data parallel....
® Maps automatically to a scalable architecture

® CUDA provides an insight into a data parallel future

© NVIDIA Corporation 2007

