
CGO-2007 1

Understanding Tradeoffs in
Software Transactional Memory

Dave Dice
Sun Microsystems JVM Core Engineering

Nir Shavit
Tel-Aviv University

Sun Labs Scalable Synchronization Research Group

CGO-2007 2

Concurrency Today

• We wanted more clock speed ...
– Instead we got more cores
– Moore restated: cores instead of transistors

• Niagara-2 – 64x
• Thread-level explicit parallelism …

– not a feature
– it’s a remedy with side effects - complexity
– Best remaining avenue
– Patterson: end of La-z-boy era

CGO-2007 3

Harnessing Concurrency
• Locks

– Deadlock & composability
– Broken variable::lock mappings
– Fine-grained fast & complex

• Error-prone – best left to experts
– Coarse-grained slow & simple & safe

• Typically untapped parallelism
• Non-blocking : wait-free and lock-free techniques

– Complex – not suitable for most programmers
– Performance varies - progress
– Small catalog of known-good algorithms

• concurrent collections

CGO-2007 4

Human Scalability

• Programmers - Programs
• Reduce complexity
• Eliminate sources of error
• Raise abstraction level above locks
• Think sequentially, execute concurrently
• The right constructs to use concurrency
• Still provide scalability & performance

CGO-2007 5

Transactional Memory
• Synchronization mechanism
• Library-based until recently
•• ShouldShould be integrated into language
• Often expressed as “atomic {…}”
• Varieties: Hardware, Software (STM), hybrid
• STM design issues impact

– Compiler
– Runtime environment

• Pluggable STM implementations

CGO-2007 6

Software Transactional Memory
• Optimistic concurrency control

– Detect and recover from conflicts
• Speculative phase – run transaction

– Track loads – read-set
– Save stores – write-set

• Followed by commit attempt – atomic
– Validate the read-set

• Check for concurrent interference
– Commit the speculative stores
– Otherwise abort & retry

CGO-2007 7

Lock-Based STMs

• lock-free v. lock-based implementation
• Optimistic concurrency implemented with

locks
• Advocated by Ennals
• Solaris schedctl makes it viable

– Advisory preemption deferral
• Transactional Locking: TL and TL2 …

CGO-2007 8

Lock-based STM Design Choices
• Lock :: variable mapping

– Separate array of locks
• Array size, hash & stripe-width

– Colocate lock with data : per-object
• When to acquire locks

– As encountered or at commit-time
– Scalability – reduced lock-hold times

• Store policy
– Update-in-place vs speculative store buffer

• Read-set consistency during a transaction
– Prevent inconsistent execution
– Allow but detect & recover

CGO-2007 9

TL Data Structures

Map Metadata:
Array of Versioned-
Write-Locks

Application
Memory

Shared variable is covered by a single lock
Hash function: maps variable lock

V#

CGO-2007 10

TL
• Data structures:

– Thread-local read-set and write-set
– Array of locks

• Store
– Save (address,value) in write-set

• Load
– Look-aside in write-buffer

• RAW Hazard
• Accelerate with Bloom filter

– Load both lock and variable
– Check lock-bit
– Record (address,version#) in read-set

CGO-2007 11

TL
• Commit

– Acquire locks covering write-set
• schedctl

– Bounded spin, then abort, back-off, retry
– Validate read-set version#s unchanged
– Write-back write-set
– Increment and release write-set locks

• Locks held for a very short time
• Periodically validate read-set

– During speculative phase
– Seen inconsistent read-set? Abort

CGO-2007 12

Inconsistent Execution

Validate

{ A=4;B=0; }{ X=5/(A+B) }
TST(A=4)

5/(A+B) :Trap!
SuccessTLD(B) 0

Unlock A,B
ST A=4;B=0

Lock A,B
Commit
TST(B=0)

TLD(A) 0

Tx2Tx1

Ti
m

e

Tx1,Tx2 interleave
X local variable
A,B shared txl
Invariant: (A+B)!=0
Initially: A=0;B=1

CGO-2007 13

Zombie Transactions
• Has seen an inconsistent read-set
• Fated to abort
• But still running app code
• Misbehavior:

– infinite loops : compiler must emit checks
– Traps : runtime must tolerate

• Unsafe in an unmanaged runtime environment

CGO-2007 14

Zombies - Alternatives
• Validate periodically: admits zombies
• Validate after each transactional load

– Prevents zombies
– Cost is quadratic with read-set size

• Read-write locks - form of visible readers
– Acquire read-lock before load
– Read-set always consistent
– No zombies thus no validation required
– Atomics and coherency traffic (writes)
– Admits less parallelism - scalability

• TL2 – prevents zombie execution

CGO-2007 15

TL2
• Successor to TL - DISC’06 [+Ori Shalev]
• Efficient validation

– No zombies
– Avoids quadratic cost
– Avoids visible readers

• Less intrusive to code-generation and runtime
environment

• Key: global clock
– Hardware or software
– Thread-local wv, rv variables and global clock

CGO-2007 16

TL2 - Algorithm
• Start: rv = globalclock
• Load: Same except …

– check version#(variable) <= rv
• Store: same as TL
• Commit:

– Acquire locks on write-set
– Validate read-set version#s <= rv
– wv = Fetch&Add (globalclock)
– Write-back
– Store wv into locks covering write-set

• Releases locks and updates version#

CGO-2007 17

Memory Lifecycle Pathology
Tx2Tx1
{ T=A;A=null;}{ if(A!=null) A->Field=3}

free(T)
ST A->Field=3 (!)

Success
ST A=null
Validate A
Lock A

CommitValidate A
Lock A->Field

Commit
TST(A=null)TST(A->Field=3)
TLD(A); T=A;TLD(A) non-null

Ti
m

e

CGO-2007 18

Lifecycle Concerns
• Hazard:

– Memory region is accessed transactionally
– Region removed from transactional data structure
– Then accessed non-transactionally
– Latent transactional stores

• Explicit privatization
– TL & TL2 : quiesce regions
– Wait for latent stores to complete

• Implicit privatization
– Possibly less scalable (today)
– Easier for programmer – reduced complexity

CGO-2007 19

Compiler Integration

• Hybrid Transactional Memory
– ASPLOS 2006 [Damron, et al.]

• Prototyped in production C++ compiler
• No changes to data layout
• No GC required
• Now supports TL2
• Pluggable STMs: HyTM, TL2

CGO-2007 20

Summary

• STM design decisions impact code generation
– Runtime & JIT coevolved with GC – now TM

• TL or TL2: managed runtimes -- Java
• TL2 : unmanaged environments -- C/C++
• Competitive with hand-coded performance
• Lifecycle issues
• Schedctl makes blocking STMs viable

CGO-2007 21

Thank You

