
1

Ubiquitous Memory 
Introspection (UMI)

Qin Zhao, NUS
Rodric Rabbah, IBM

Saman Amarasinghe, MIT
Larry Rudolph, MIT

Weng-Fai Wong, NUS

CGO 2007, March 14 2007
San Jose, CA



2

The complexity crunch
hardware complexity ↑

+
software complexity ↑

⇓
too many things happening concurrently, 
complex interactions and side-effects

⇓
less understanding of program 

execution behavior ↓



3

• S/W developer
– Computation vs. 

communication ratio
– Function/path frequency
– Test coverage

• H/W designer
– Cache behavior
– Branch prediction

• System administrator
– Interaction between 

processes

The importance of program 
behavior characterization

Better understanding of 
program characteristics 
can lead to more robust 
software, and more 
efficient hardware and 
systems



4

Common approaches to
program understanding

Versatility

Level of 
detail

Overhead Space and time overhead

Coarse grained summaries vs. 
instruction level and contextual 
information

Portability and ability to adapt to 
different uses



5

Common approaches to
program understanding

high

very high

high

Profiling

very highVersatility

very highLevel of 
detail

very highOverhead

Simulation



6

Common approaches to
program understanding

high

very high

high

Profiling

very lowvery highVersatility

very lowvery highLevel of 
detail

very lowvery highOverhead

HW 
CountersSimulation



7

Slowdown due to HW counters 
(counting L1 misses for 181.mcf on P4)

0
100
200
300
400
500
600
700
800

native 10 100 1K 10K 100K 1M

HW counter sample size

Ti
m
e 

(s
ec

on
ds

)

(>2000%)

(1%)(10%) (1%)(35%)

(325%)

(% slowdown)



8

Common approaches to
program understanding

high

very high

high

Profiling

highvery lowvery highVersatility

highvery lowvery highLevel of 
detail

lowvery lowvery highOverhead

Desirable 
Approach

HW 
CountersSimulation



9

Common approaches to
program understanding

high

very high

high

Profiling

highvery lowvery highVersatility

highvery lowvery highLevel of 
detail

lowvery lowvery highOverhead

Desirable 
Approach

HW 
CountersSimulation UMI



10

Key components

• Dynamic Binary Instrumentation 
– Complete coverage, transparent, language 

independent, versatile, …

• Bursty Simulation
– Sampling and fast forwarding techniques
– Detailed context information
– Reasonable extrapolation and prediction



11

Ubiquitous Memory 
Introspection

online mini-simulations analyze short memory 
access profiles recorded from frequently 
executed code regions

• Key concepts
– Focus on hot code regions
– Selectively instrument instructions
– Fast online mini-simulations
– Actionable profiling results for online memory 

optimizations



12

Working prototype

• Implemented in DynamoRIO
– Runs on Linux
– Used on Intel P4 and AMD K7

• Benchmarks
– SPEC 2000, SPEC 2006, Olden
– Server apps: MySQL, Apache
– Desktop apps: Acrobat-reader, MEncoder



13

UMI is cheap and non-intrusive
(SPEC2K reference workloads on P4)

Ave
rag

e

0%

20%

40%

60%

80%

16
8.w

up
wise

17
1.s

wim
17

2.m
gri

d
17

3.a
pp

lu
17

7.m
es

a
17

8.g
alg

el
17

9.a
rt

18
3.e

qu
ak

e
18

7.f
ac

ere
c

18
8.a

mmp
18

9.l
uc

as
19

1.f
ma3

d
20

0.s
ixt

rac
k

30
1.a

ps
i

16
4.g

zip
17

5.v
pr

17
6.g

cc
18

1.m
cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on
25

3.p
erl

bm
k

25
4.g

ap
25

5.v
ort

ex
56

.bz
ip2

30
0.t

wolf
em

3d
he

alt
h mst

tre
ea

dd tsp

ft

DynamoRIO
UMI

•Average overhead is 14%
• 1% more than DynamoRIO

%
 s

lo
wd

ow
n 

co
m
pa

re
d 

to
 n

at
iv
e 

ex
ec

ut
io
n



14

What can UMI do for you?

• Inexpensive introspection everywhere

• Coarse grained memory analysis
– Quick and dirty

• Fine grained memory analysis
– Expose opportunities for optimizations

• Runtime memory-specific optimizations
– Pluggable prefetching, learning, adaptation



15

Coarse grained memory analysis

• Experiment: measure cache misses in 
three ways 
– HW counters
– Full cache simulator (Cachegrind)
– UMI

• Report correlation between 
measurements
– Linear relationship of two sets of data

1-1
strong positive 

correlation
0strong negative 

correlation

no correlation



16

Cache miss correlation results 

• HW counter vs. Cachegrind
– 0.99
– 20x to 100x slowdown

• HW counter vs. UMI
– 0.88
– Less than 2x slowdown

in worst case
0

0.2

0.4

0.6

0.8

1

(H
W

, C
G)

(H
W

, U
MI)



17

What can UMI do for you?

• Inexpensive introspection everywhere

• Coarse grained memory analysis
– Quick and dirty

• Fine grained memory analysis
– Expose opportunities for optimizations

• Runtime memory-specific optimizations
– Pluggable prefetching, learning, adaptation



18

Fine grained memory analysis
• Experiment: predict delinquent loads using UMI

– Individual loads with cache miss rate greater than 
threshold

• Delinquent load set determined according to 
full cache simulator (Cachegrind)
– Loads that contribute 90% of total cache misses

• Measure and report two metrics
Delinquent loads

identified by
Cachegrind

Delinquent loads 
predicted by 

UMIrecall false
positive



19

UMI delinquent load 
prediction accuracy

59%26%
benchmarks 
with < 1% 
miss rate

55%88%
benchmarks 
with ≥ 1% 
miss rate

Recall

(higher is better)

False 
positive

(lower is better)



20

What can UMI do for you?

• Inexpensive introspection everywhere

• Coarse grained memory analysis
– Quick and dirty

• Fine grained memory analysis
– Expose opportunities for optimizations

• Runtime memory-specific optimizations
– Pluggable prefetcher, learning, adaptation



21

Experiment: online stride 
prefetching

• Use results of delinquent load prediction

• Discover stride patterns for delinquent loads

• Insert instructions to prefetch data to L2

• Compare runtime for UMI and P4 with HW 
stride prefetcher



22

Data prefetching results summary

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ru
nn

in
g 

tim
e 

no
rm

al
iz

ed
 to

 n
at

iv
e 

ex
ec

ut
io

n 
(lo

w
er

 is
 b

et
te

r)

SW prefetching

HW prefetching

Combined

ft
Ave

rag
e

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

18
1.m

cf
17

1.s
wim

17
2.m

gri
d

17
9.a

rt

18
3.e

qu
ak

e
18

8.a
mmp

19
1.f

ma3
d

30
1.a

ps
i

em
3d mst ft

Ave
rag

e



23

The Gory Details



24

UMI components

• Region selector

• Instrumentor

• Profile analyzer



25

Region selector

• Identify representative code regions
– Focus on traces, loops
– Frequently executed code
– Piggy back on binary instrumentor tricks

• Reinforce with sampling 
– Time based, or leverage HW counters
– Naturally adapt to program phases



26

Instrumentor
• Record address references

– Insert instructions to record address 
referenced by memory operation

• Manage profiling overhead
– Clone code trace (akin to Arnold-Ryder scheme)
– Selective instrumentation of memory operations

• E.g., ignore stack and static data 



27

Recording profiles
Code Trace Profile

T1
T1
T2
T1

counter

0x1040x0280x013

0x012

0x1000x0240x011

op3op2op1
Code Trace T1

Code Trace T2

0x0310x032

op2op1
counter

page protection 
to detect 
profile overflow

Address Profiles

early trace 
exist

early trace 
exist



28

Mini-simulator
• Triggered when code or address profile is full
• Simple cache simulator

– Currently simulate L2 cache of host
– LRU replacement
– Improve approximations with techniques similar to 

offline fast forwarding simulators
• Warm up and periodic flushing

• Other possible analyzer
– Reference affinity model
– Data reuse and locality analysis



29

Mini-simulations and 
parameter sensitivity

181.mcf

0.00
0.20
0.40
0.60
0.80
1.00
1.20

1 2 4 8 16 32 64 128 256 512 1024
sampling frequency threshold

recall false
positive

1.40

normalized performance recall ratio false positive ratio

• Regular data structures
• If sampling threshold too high, starts to exceed 

loop bounds: miss out on profiling important loops
• Adaptive threshold is best



30

Mini-simulations and 
parameter sensitivity

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

64 128 256 512 1K 2K 4K 8K 32K

address profile length

197.parser
recall false

positive

16K

normalized performance recall ratio false positive ratio

• Irregular data structures
• Need longer profiles to reach useful conclusions



31

Summary
• UMI is lightweight and has a low overhead

– 1% more than DynamoRIO
– Can be done with Pin, Valgrind, etc.
– No added hardware necessary
– No synchronization or syscall headaches
– Other cores can do real work!

• Practical for extracting detailed information
– Online and workload specific
– Instruction level memory reference profiles
– Versatile and user-programmable analysis

• Facilitate migration of offline memory optimizations 
to online setting



32

Future work
• More types of online analysis

– Include global information
– Incremental (leverage previous execution info)
– Combine analysis across multiple threads

• More runtime optimizations 
– E.g., advanced prefetch optimization

• Hot data stream prefetch
• Markov prefetcher

– Locality enhancing data reorganization
• Pool allocation
• Cooperative allocation between different threads

• Your ideas here…


