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The complexity crunch
hardware complexity ↑

+
software complexity ↑

⇓
too many things happening concurrently, 
complex interactions and side-effects

⇓
less understanding of program 

execution behavior ↓
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• S/W developer
– Computation vs. 

communication ratio
– Function/path frequency
– Test coverage

• H/W designer
– Cache behavior
– Branch prediction

• System administrator
– Interaction between 

processes

The importance of program 
behavior characterization

Better understanding of 
program characteristics 
can lead to more robust 
software, and more 
efficient hardware and 
systems
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Common approaches to
program understanding

Versatility

Level of 
detail

Overhead Space and time overhead

Coarse grained summaries vs. 
instruction level and contextual 
information

Portability and ability to adapt to 
different uses



5

Common approaches to
program understanding

high

very high

high

Profiling

very highVersatility

very highLevel of 
detail

very highOverhead

Simulation



6

Common approaches to
program understanding

high

very high

high

Profiling

very lowvery highVersatility

very lowvery highLevel of 
detail

very lowvery highOverhead

HW 
CountersSimulation



7

Slowdown due to HW counters 
(counting L1 misses for 181.mcf on P4)
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Key components

• Dynamic Binary Instrumentation 
– Complete coverage, transparent, language 

independent, versatile, …

• Bursty Simulation
– Sampling and fast forwarding techniques
– Detailed context information
– Reasonable extrapolation and prediction
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Ubiquitous Memory 
Introspection

online mini-simulations analyze short memory 
access profiles recorded from frequently 
executed code regions

• Key concepts
– Focus on hot code regions
– Selectively instrument instructions
– Fast online mini-simulations
– Actionable profiling results for online memory 

optimizations
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Working prototype

• Implemented in DynamoRIO
– Runs on Linux
– Used on Intel P4 and AMD K7

• Benchmarks
– SPEC 2000, SPEC 2006, Olden
– Server apps: MySQL, Apache
– Desktop apps: Acrobat-reader, MEncoder



13

UMI is cheap and non-intrusive
(SPEC2K reference workloads on P4)
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What can UMI do for you?

• Inexpensive introspection everywhere

• Coarse grained memory analysis
– Quick and dirty

• Fine grained memory analysis
– Expose opportunities for optimizations

• Runtime memory-specific optimizations
– Pluggable prefetching, learning, adaptation
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Coarse grained memory analysis

• Experiment: measure cache misses in 
three ways 
– HW counters
– Full cache simulator (Cachegrind)
– UMI

• Report correlation between 
measurements
– Linear relationship of two sets of data

1-1
strong positive 

correlation
0strong negative 

correlation

no correlation
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Cache miss correlation results 

• HW counter vs. Cachegrind
– 0.99
– 20x to 100x slowdown

• HW counter vs. UMI
– 0.88
– Less than 2x slowdown

in worst case
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What can UMI do for you?

• Inexpensive introspection everywhere

• Coarse grained memory analysis
– Quick and dirty

• Fine grained memory analysis
– Expose opportunities for optimizations

• Runtime memory-specific optimizations
– Pluggable prefetching, learning, adaptation
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Fine grained memory analysis
• Experiment: predict delinquent loads using UMI

– Individual loads with cache miss rate greater than 
threshold

• Delinquent load set determined according to 
full cache simulator (Cachegrind)
– Loads that contribute 90% of total cache misses

• Measure and report two metrics
Delinquent loads

identified by
Cachegrind

Delinquent loads 
predicted by 

UMIrecall false
positive
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UMI delinquent load 
prediction accuracy

59%26%
benchmarks 
with < 1% 
miss rate

55%88%
benchmarks 
with ≥ 1% 
miss rate

Recall

(higher is better)

False 
positive

(lower is better)
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What can UMI do for you?

• Inexpensive introspection everywhere

• Coarse grained memory analysis
– Quick and dirty

• Fine grained memory analysis
– Expose opportunities for optimizations

• Runtime memory-specific optimizations
– Pluggable prefetcher, learning, adaptation
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Experiment: online stride 
prefetching

• Use results of delinquent load prediction

• Discover stride patterns for delinquent loads

• Insert instructions to prefetch data to L2

• Compare runtime for UMI and P4 with HW 
stride prefetcher
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Data prefetching results summary

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ru
nn

in
g 

tim
e 

no
rm

al
iz

ed
 to

 n
at

iv
e 

ex
ec

ut
io

n 
(lo

w
er

 is
 b

et
te

r)

SW prefetching

HW prefetching

Combined

ft
Ave

rag
e

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

18
1.m

cf
17

1.s
wim

17
2.m

gri
d

17
9.a

rt

18
3.e

qu
ak

e
18

8.a
mmp

19
1.f

ma3
d

30
1.a

ps
i

em
3d mst ft

Ave
rag

e



23

The Gory Details
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UMI components

• Region selector

• Instrumentor

• Profile analyzer
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Region selector

• Identify representative code regions
– Focus on traces, loops
– Frequently executed code
– Piggy back on binary instrumentor tricks

• Reinforce with sampling 
– Time based, or leverage HW counters
– Naturally adapt to program phases
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Instrumentor
• Record address references

– Insert instructions to record address 
referenced by memory operation

• Manage profiling overhead
– Clone code trace (akin to Arnold-Ryder scheme)
– Selective instrumentation of memory operations

• E.g., ignore stack and static data 
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Recording profiles
Code Trace Profile

T1
T1
T2
T1

counter

0x1040x0280x013

0x012

0x1000x0240x011

op3op2op1
Code Trace T1

Code Trace T2

0x0310x032

op2op1
counter

page protection 
to detect 
profile overflow

Address Profiles

early trace 
exist

early trace 
exist
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Mini-simulator
• Triggered when code or address profile is full
• Simple cache simulator

– Currently simulate L2 cache of host
– LRU replacement
– Improve approximations with techniques similar to 

offline fast forwarding simulators
• Warm up and periodic flushing

• Other possible analyzer
– Reference affinity model
– Data reuse and locality analysis
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Mini-simulations and 
parameter sensitivity

181.mcf
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sampling frequency threshold

recall false
positive

1.40

normalized performance recall ratio false positive ratio

• Regular data structures
• If sampling threshold too high, starts to exceed 

loop bounds: miss out on profiling important loops
• Adaptive threshold is best
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Mini-simulations and 
parameter sensitivity
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• Irregular data structures
• Need longer profiles to reach useful conclusions
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Summary
• UMI is lightweight and has a low overhead

– 1% more than DynamoRIO
– Can be done with Pin, Valgrind, etc.
– No added hardware necessary
– No synchronization or syscall headaches
– Other cores can do real work!

• Practical for extracting detailed information
– Online and workload specific
– Instruction level memory reference profiles
– Versatile and user-programmable analysis

• Facilitate migration of offline memory optimizations 
to online setting
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Future work
• More types of online analysis

– Include global information
– Incremental (leverage previous execution info)
– Combine analysis across multiple threads

• More runtime optimizations 
– E.g., advanced prefetch optimization

• Hot data stream prefetch
• Markov prefetcher

– Locality enhancing data reorganization
• Pool allocation
• Cooperative allocation between different threads

• Your ideas here…


