Isla Vista Heap Sizing:
Using Feedback to Avoid Paging

Chris Grzegorczyk
Sunil Soman

Rich Wolski
Chandra Krintz

Dept. of Computer Science
University of California, Santa Barbara

State of Affairs

* Managed Runtime Environment (MRE)

b Garbage Collector (GC): automatic memory management
L Manage heap storage: reclaim dead, unreachable objects
B mpacts application execution performance

e Operating System (OS)
L Memory Manager (MM): automatic storage allocation
L Arbitrate allocation of physical memory to competing apps
L Reclaim pages unlikely to be used soon

e Observation: MM & GC have diff. objectives

L Potential for conflict and negative impact on application

2

Questions

eWhen do GC and MM conflict?

- What GC actions cause degraded performance?

» Large heaps result in page faults during GC
- What level of performance degradation results from conflict?

» Page faulting can be dominating factor in application performance

e Can controlling heap size alleviate conflict?

e An additional constraint: Non-intrusiveness
- MM and GC are complex and sensitive to changes
» Critical to stability and performance of OS/MRE
L Simplicity and portability result in practical impact

Avoid or Cooperate?

*Who is responsible for heap residency?

1. Cooperation: Intertwine MM and GC [Hertz PLDIOS]

» Communicate page out/in events to GC
» Try to keep heap resident by freeing pages
» Track connectivity of swapped pages, avoid them during full GC

2. Avoidance: MRE avoids swapping [Yang ISMMO04,Yang OSDI0é]

» Modify memory manager to support approx real mem. availability
» Use available memory info to resize heap

Outline

e Understanding GC Memory Access Patterns

4 Visualizing the working set of GC

4 |dentifying GC and heap sizing triggers
eReclaiming Pages in the MM

- Handling a Memory Shortfall
e Solution: Isla Vista Heap Sizing

- Heap Resizing using MM events as Feedback
- Measuring the cost of GC induced Paging
- Evaluating IV Heap Sizing

4 Examining the Non-Infrusive Design

GC Mem. Access Patterns

e GenMS: Gen. Mark-Sweep [Blackburn ICSEO4]

b Heap divided into 3 spaces:
» Nursery: allocate objects here
» Copy: used for copying live objects during GC
» Mature: objects having survived more than one GC, "old”

- Two kinds of collections:
» Nursery GC: copying collection of nursery into copy

» Full GC: marking traversal of live mature, then sweep dead

e Why GenMS? Best GC in JikesRVM

GC Mem. Access Patterns

e GenMS: Gen. Mark-Sweep [Blackburn ICSEO4]

b Heap divided into 3 spaces:
» Nursery: allocate objects here
» Copy: used for copying live objects during GC
» Mature: objects having survived more than one GC, “old”

- Two kinds of collections:
» Nursery GC: copying collection of nursery into copy

» Full GC: marking traversal of live mature, then sweep dead

e Why GenMS? Best GC in JikesRVM

Nursery GC

Live Object ll Dead Object

MATURE

EEN [[

BOEE .

|

B
.JL

Nursery GC: Copy

——

Live Object ll Dead Object
MATURE COPY NURSERY
B]

 HE | W EEE [[
H B

| B]| HH

N W B
i B

Nursery GC: Promotion

Live Object ll Dead Object
MATURE : ‘OPY NURSERY

p—
—_
—_

= _t-l

il _EN =
.

HN RNl

Full GC: Mark

Live Object ll Dead Object

MATURE COPY NURSERY

11

Full GC: Sweep

Live Object ll Dead Object

MATURE COPY NURSERY

12

Reclaiming Pages in MM

ePage Replacement: 2Q [Johnson VLDB9%4]

b Why? Linux 2.6.16.9 uses approx. 2Q
- Maintains lists to tfrack recency of reference: Active, Inactive

» Active: recently used, hot pages
» Inactive: candidates for reclaim (i.e. swap out, free)

eTracks fast simple performance counters

» 2Q: page [de]activations, page in/out, inactive refills, allocation stalls
» Demand Paging: major/minor faults

13

13

Reclaiming Pages in MM

* MM triggered by memory shortfall

4 Two thresholds for number of free pages

» Low: starting to run out of memory for allocations
» min: allocations stopped, page laundering required to allocate

eHow pages are reclaimed:
1. Refill inactive list
» unreferenced pages from active list
2. Scan inactive list
» free unused or start [/O
3. Scan inactive list again
» wait for |/O to finish

14

14

Handling a Shortfall

oTwo Possible Reclaim Paths:

1. Passive Reclaim: free < 1low

» Wake up kswapd, kernel thread for freeing memory
» kswapd asynchronously flushes pages to disk (pageout)

2. Direct Reclaim: free <min

» Allocations halted until free > 1low
» Trying to allocate memory executes reclaim code (allocstall)
» Process does the work of kswapd synchronously (pageoutS)

*Recall: Full GC touches all heap pages

15

15

Solution: IV Heap Sizing

e Objective: Profitably trade GC for page faults
4 Shrink heap inducing GC; avoiding paging

®allocstall as predictor of future GC-induced paging

e Conftrolling heap size in JikesRVM

b Determined by 1 variable: heap size (=mature+copy+nursery)
 Resize the heap after each GC, including nursery

elsla Vista Heap Sizing

L Sample feedback only during GC
» NO allocstall: Grow heap linearly

» allocstall: Shrink heap multiplicatively ”

16

Evaluating IV Heap Sizing

e Evaluation Platform

b Current & standard: Linux 2.6.16.9, JikesRVM CVS~2.4.6

L SPECjvm98, dacapo, and SPECjbb2000

4 Hardware: 3.2Ghz Xeon, 896MB RAM, 5GB swap, 4k pages

- Heap Sizes: 40MB-256MB

4 Induce mem. pressure w/ mlock(): 640MB(pmd),736MB(javac)

e Magnitude of GC induced paging
eHow well does IV Heap Sizing mitigate problem

 Baseline (JikesRVM): with pressure, and without pressure

- |V Heap Sizing: with pressure, and without pressure -

17

GC-induced Paging

14

[
N

-B- javac 2 pmd

[
o

)

Normalized Execution time (mem-
pressure over no mem-pressure)

/s

ARt

A DA AN A A A A A

D‘O

P

kO © O ® P M . -
LN ,;'o ,yb AD D¢

0 .6
O D Y 4
Heap Size (MB)

83

18

18

Execution time (sec)

omMma: executlon time

140
+- Base-NoPressure - Base-MemPressure
120 [IV NoPressure - IV MemPressure | |
100 / \| /|\
./| \ + et '
/

80 /

60 /

40 /

javac: execution time

javac

=
0,

+- Base-NoPressure - Base-MemPressure

SN
o

| -~ IV NoPressure -~ IV MemPressure

W
Ul

W
o

N
0,

N
o

b
N

Execution time (sec)

b
o

o U

javac: allocstalls and faults

javac -+ Base allocstalls

—o— Base major faults
-@- |V alloc stalls
== [V maijor faults

N w
8)) o
\

Cumulative Time (sec)
a 8
\
\\

-
(=]

® P A PP e S O WP

Heap Size (MB)

Design of IV Heap Sizing

® Linux: Insert kernel module

b Exports allocstall feedback

L No need to modify MM, ensures integrity
* JikesRVM: Modify Heap Sizing Policy
L Heap Sizing after every GC using feedback

- No need for new GC algorithm

JikesRVM
state

(Heap Growth Manager)

boolean

/\.

Kernel
Module

Kernel

|

Memory Manager

[allocstall]
—

|

22

22

Conclusions

e Beneficial trade: GCs for Page Faults

4 Trigger GC by resizing the heap
b Improves performance under memory pressure
5 Doesn't hurt when there is no pressure

*allocstall: effective predictor GC page faults

b Best performing given constraints

e Non-Intrusive Design

- No changes to the Memory Manager
- No changes to the Garbage Collector

23

23

Conclusions

e Beneficial trade: GCs for Page Faults

- Trigger GC by resizing the heap
b Improves performance under memory pressure
5 Doesn't hurt when there is no pressure

*allocstall: effective predictor GC page faults

b Best performing given constraints

e Non-Intrusive Design

- No changes to the Memory Manager
- No changes to the Garbage Collector

eSource Code available under GPL o

24

Questionse &

Chris Grzegorczyk

arze@cs.ucsb.edu

http://www.cs.ucsb.edu/~grze/ivhs

mailto:grze@cs.ucsb.edu
mailto:grze@cs.ucsb.edu
http://www.cs.ucsb.edu/~grze/ivhs/
http://www.cs.ucsb.edu/~grze/ivhs/

