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State of Affairs
•Managed Runtime Environment (MRE)
↳Garbage Collector (GC): automatic memory management

↳Manage heap storage: reclaim dead, unreachable objects

↳Impacts application execution performance

•Operating System (OS)
↳Memory Manager (MM): automatic storage allocation

↳Arbitrate allocation of physical memory to competing apps

↳Reclaim pages unlikely to be used soon 

•Observation: MM & GC have diff. objectives
↳Potential for conflict and negative impact on application 2
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Questions
•When do GC and MM conflict?
↳ What GC actions cause degraded performance?

▸ Large heaps result in page faults during GC
↳ What level of performance degradation results from conflict?

▸ Page faulting can be dominating factor in application performance

•Can controlling heap size alleviate conflict?

•An additional constraint: Non-intrusiveness
↳ MM and GC are complex and sensitive to changes

▸ Critical to stability and performance of OS/MRE

↳ Simplicity and portability result in practical impact 3
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Avoid or Cooperate?
•Who is responsible for heap residency?

1. Cooperation:  Intertwine MM and GC [Hertz PLDI05]
▸ Communicate page out/in events to GC
▸ Try to keep heap resident by freeing pages
▸ Track connectivity of swapped pages, avoid them during full GC

2. Avoidance:  MRE avoids swapping [Yang ISMM04,Yang OSDI06]
▸ Modify memory manager to support approx real mem. availability
▸ Use available memory info to resize heap
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Outline
•Understanding GC Memory Access Patterns
↳ Visualizing the working set of GC

↳ Identifying GC and heap sizing triggers

•Reclaiming Pages in the MM
↳ Handling a Memory Shortfall

•Solution: Isla Vista Heap Sizing
↳ Heap Resizing using MM events as Feedback

↳ Measuring the cost of GC induced Paging

↳ Evaluating IV Heap Sizing

↳ Examining the Non-Intrusive Design
5
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GC Mem. Access Patterns
•GenMS: Gen. Mark-Sweep [Blackburn ICSE04]
↳ Heap divided into 3 spaces:

▸ Nursery: allocate objects here

▸ Copy: used for copying live objects during GC

▸ Mature: objects having survived more than one GC, “old”

↳ Two kinds of collections:

▸ Nursery GC: copying collection of nursery into copy

▸ Full GC: marking traversal of live mature, then sweep dead

•Why GenMS? Best GC in JikesRVM
6
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MATURE NURSERYCOPY

Object allocation fills nursery

Live Object Dead Object

Nursery GC
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COPYMATURE NURSERY

Live objects copied

Nursery GC: Copy
Live Object Dead Object
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MATURE COPY NURSERY

Objects Promoted

Nursery Shrinks

Nursery GC: Promotion
Live Object Dead Object
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MATURE COPY NURSERY

Mark reachable objects

Full GC: Mark
Live Object Dead Object
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MATURE COPY NURSERY

Sweep away dead objects

Full GC: Sweep
Live Object Dead Object
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Reclaiming Pages in MM
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•Page Replacement: 2Q [Johnson VLDB94]
↳ Why? Linux 2.6.16.9 uses approx. 2Q

↳ Maintains lists to track recency of reference: Active, Inactive

▸ Active: recently used, hot pages
▸ Inactive: candidates for reclaim (i.e. swap out, free)

•Tracks fast simple performance counters
▸ 2Q: page [de]activations, page in/out, inactive refills, allocation stalls
▸ Demand Paging: major/minor faults
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Reclaiming Pages in MM
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•MM triggered by memory shortfall
↳ Two thresholds for number of free pages

▸ low: starting to run out of memory for allocations
▸ min: allocations stopped, page laundering required to allocate

•How pages are reclaimed:
1. Refill inactive list 

▸ unreferenced pages from active list
2. Scan inactive list 

▸ free unused or start I/O
3. Scan inactive list again 

▸ wait for I/O to finish
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Handling a Shortfall

15

•Two Possible Reclaim Paths:

1. Passive Reclaim: free < low

▸ Wake up kswapd, kernel thread for freeing memory

▸ kswapd asynchronously flushes pages to disk (pageout)

2. Direct Reclaim: free < min

▸ Allocations halted until free > low
▸ Trying to allocate memory executes reclaim code (allocstall)

▸ Process does the work of kswapd synchronously (pageoutS)

•Recall:  Full GC touches all heap pages
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Solution: IV Heap Sizing
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•Objective: Profitably trade GC for page faults
↳ Shrink heap inducing GC; avoiding paging

•allocstall as predictor of future GC-induced paging

•Controlling heap size in JikesRVM
↳ Determined by 1 variable: heap size (=mature+copy+nursery)

↳ Resize the heap after each GC, including nursery

•Isla Vista Heap Sizing
↳ Sample feedback only during GC

▸ No allocstall: Grow heap linearly

▸ allocstall: Shrink heap multiplicatively
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Evaluating IV Heap Sizing
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•Evaluation Platform
↳ Current & standard:  Linux 2.6.16.9, JikesRVM CVS~2.4.6

↳ SPECjvm98, dacapo, and SPECjbb2000

↳ Hardware: 3.2Ghz Xeon, 896MB RAM, 5GB swap, 4k pages

↳ Heap Sizes: 40MB-256MB

↳ Induce mem. pressure w/ mlock(): 640MB(pmd),736MB(javac)

•Magnitude of GC induced paging
•How well does IV Heap Sizing mitigate problem
↳ Baseline (JikesRVM): with pressure, and without pressure

↳ IV Heap Sizing: with pressure, and without pressure
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GC-induced Paging
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pmd: execution time
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javac: allocstalls and faults
javac
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• Linux: Insert kernel module
↳Exports allocstall feedback

↳No need to modify MM, ensures integrity

• JikesRVM: Modify Heap Sizing Policy
↳Heap Sizing after every GC using feedback

↳No need for new GC algorithm

Design of IV Heap Sizing
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Kernel

Kernel 
Module

Memory Manager

allocstall

JikesRVM

Heap Growth Manager

countboolean

state

22



Conclusions
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•Beneficial trade: GCs for Page Faults
↳ Trigger GC by resizing the heap

↳ Improves performance under memory pressure

↳ Doesn’t hurt when there is no pressure

•allocstall: effective predictor GC page faults
↳ Best performing given constraints

•Non-Intrusive Design
↳ No changes to the Memory Manager

↳ No changes to the Garbage Collector
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Conclusions

24

•Beneficial trade: GCs for Page Faults
↳ Trigger GC by resizing the heap

↳ Improves performance under memory pressure

↳ Doesn’t hurt when there is no pressure

•allocstall: effective predictor GC page faults
↳ Best performing given constraints

•Non-Intrusive Design
↳ No changes to the Memory Manager

↳ No changes to the Garbage Collector

•Source Code available under GPL
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Questions?
Chris Grzegorczyk

grze@cs.ucsb.edu

http://www.cs.ucsb.edu/~grze/ivhs
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