
Isla Vista Heap Sizing:

Using Feedback to Avoid Paging

Dept. of Computer Science
University of California, Santa Barbara

Chris Grzegorczyk
Sunil Soman
Rich Wolski
Chandra Krintz

1

1

State of Affairs
•Managed Runtime Environment (MRE)
↳Garbage Collector (GC): automatic memory management

↳Manage heap storage: reclaim dead, unreachable objects

↳Impacts application execution performance

•Operating System (OS)
↳Memory Manager (MM): automatic storage allocation

↳Arbitrate allocation of physical memory to competing apps

↳Reclaim pages unlikely to be used soon

•Observation: MM & GC have diff. objectives
↳Potential for conflict and negative impact on application 2

2

Questions
•When do GC and MM conflict?
↳ What GC actions cause degraded performance?

▸ Large heaps result in page faults during GC
↳ What level of performance degradation results from conflict?

▸ Page faulting can be dominating factor in application performance

•Can controlling heap size alleviate conflict?

•An additional constraint: Non-intrusiveness
↳ MM and GC are complex and sensitive to changes

▸ Critical to stability and performance of OS/MRE

↳ Simplicity and portability result in practical impact 3

3

Avoid or Cooperate?
•Who is responsible for heap residency?

1. Cooperation: Intertwine MM and GC [Hertz PLDI05]
▸ Communicate page out/in events to GC
▸ Try to keep heap resident by freeing pages
▸ Track connectivity of swapped pages, avoid them during full GC

2. Avoidance: MRE avoids swapping [Yang ISMM04,Yang OSDI06]
▸ Modify memory manager to support approx real mem. availability
▸ Use available memory info to resize heap

4

4

Outline
•Understanding GC Memory Access Patterns
↳ Visualizing the working set of GC

↳ Identifying GC and heap sizing triggers

•Reclaiming Pages in the MM
↳ Handling a Memory Shortfall

•Solution: Isla Vista Heap Sizing
↳ Heap Resizing using MM events as Feedback

↳ Measuring the cost of GC induced Paging

↳ Evaluating IV Heap Sizing

↳ Examining the Non-Intrusive Design
5

5

GC Mem. Access Patterns
•GenMS: Gen. Mark-Sweep [Blackburn ICSE04]
↳ Heap divided into 3 spaces:

▸ Nursery: allocate objects here

▸ Copy: used for copying live objects during GC

▸ Mature: objects having survived more than one GC, “old”

↳ Two kinds of collections:

▸ Nursery GC: copying collection of nursery into copy

▸ Full GC: marking traversal of live mature, then sweep dead

•Why GenMS? Best GC in JikesRVM
6

6

GC Mem. Access Patterns

7

•GenMS: Gen. Mark-Sweep [Blackburn ICSE04]
↳ Heap divided into 3 spaces:

▸ Nursery: allocate objects here

▸ Copy: used for copying live objects during GC

▸ Mature: objects having survived more than one GC, “old”

↳ Two kinds of collections:

▸ Nursery GC: copying collection of nursery into copy

▸ Full GC: marking traversal of live mature, then sweep dead

•Why GenMS? Best GC in JikesRVM
7

MATURE NURSERYCOPY

Object allocation fills nursery

Live Object Dead Object

Nursery GC

8

8

COPYMATURE NURSERY

Live objects copied

Nursery GC: Copy
Live Object Dead Object

9

9

MATURE COPY NURSERY

Objects Promoted

Nursery Shrinks

Nursery GC: Promotion
Live Object Dead Object

10

10

MATURE COPY NURSERY

Mark reachable objects

Full GC: Mark
Live Object Dead Object

11

11

MATURE COPY NURSERY

Sweep away dead objects

Full GC: Sweep
Live Object Dead Object

12

12

Reclaiming Pages in MM

13

•Page Replacement: 2Q [Johnson VLDB94]
↳ Why? Linux 2.6.16.9 uses approx. 2Q

↳ Maintains lists to track recency of reference: Active, Inactive

▸ Active: recently used, hot pages
▸ Inactive: candidates for reclaim (i.e. swap out, free)

•Tracks fast simple performance counters
▸ 2Q: page [de]activations, page in/out, inactive refills, allocation stalls
▸ Demand Paging: major/minor faults

13

Reclaiming Pages in MM

14

•MM triggered by memory shortfall
↳ Two thresholds for number of free pages

▸ low: starting to run out of memory for allocations
▸ min: allocations stopped, page laundering required to allocate

•How pages are reclaimed:
1. Refill inactive list

▸ unreferenced pages from active list
2. Scan inactive list

▸ free unused or start I/O
3. Scan inactive list again

▸ wait for I/O to finish

14

Handling a Shortfall

15

•Two Possible Reclaim Paths:

1. Passive Reclaim: free < low

▸ Wake up kswapd, kernel thread for freeing memory

▸ kswapd asynchronously flushes pages to disk (pageout)

2. Direct Reclaim: free < min

▸ Allocations halted until free > low
▸ Trying to allocate memory executes reclaim code (allocstall)

▸ Process does the work of kswapd synchronously (pageoutS)

•Recall: Full GC touches all heap pages
15

Solution: IV Heap Sizing

16

•Objective: Profitably trade GC for page faults
↳ Shrink heap inducing GC; avoiding paging

•allocstall as predictor of future GC-induced paging

•Controlling heap size in JikesRVM
↳ Determined by 1 variable: heap size (=mature+copy+nursery)

↳ Resize the heap after each GC, including nursery

•Isla Vista Heap Sizing
↳ Sample feedback only during GC

▸ No allocstall: Grow heap linearly

▸ allocstall: Shrink heap multiplicatively

16

Evaluating IV Heap Sizing

17

•Evaluation Platform
↳ Current & standard: Linux 2.6.16.9, JikesRVM CVS~2.4.6

↳ SPECjvm98, dacapo, and SPECjbb2000

↳ Hardware: 3.2Ghz Xeon, 896MB RAM, 5GB swap, 4k pages

↳ Heap Sizes: 40MB-256MB

↳ Induce mem. pressure w/ mlock(): 640MB(pmd),736MB(javac)

•Magnitude of GC induced paging
•How well does IV Heap Sizing mitigate problem
↳ Baseline (JikesRVM): with pressure, and without pressure

↳ IV Heap Sizing: with pressure, and without pressure

17

GC-induced Paging

18

0

2

4

6

8

10

12

14

4
0

5
6

7
2

8
8

1
0
4

1
2
0

1
3
6

1
5
2

1
6
8

1
8
4

2
0
0

2
1
6

2
3
2

2
4
8

Heap Size (MB)

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 t

im
e
 (

m
e
m

-

p
r
e
s
s
u

r
e
 o

v
e
r
 n

o
 m

e
m

-p
r
e
s
s
u

r
e
)

javac pmd

18

!"#

$

%$

&$

'$

($

)$$

)%$

)&$

&
$
*
'
+
%
(
(
)
$
&
)
%
$
)
,
'
)
*
%
)
'
(
)
(
&
%
$
$
%
)
'
%
,
%
%
&
(

-./!0S23.04M67

E
9
.
:
;
<2
=
>
0<
2"
.
04
?
.
:
7

19

pmd: execution time
!"se%&o()ess*)e !"se%+e,()ess*)e

-. &o()ess*)e -. +e,()ess*)e

19

!"#"$

%

&

'%

'&

(%

(&

)%

)&

*%

*&

*
%
&
+
,
(
-
-
'
%
*
'
(
%
'
)
+
'
&
(
'
+
-
'
-
*
(
%
%
(
'
+
(
)
(
(
*
-

./"01S34/15M78

E
:
/
$
;
<3
=
>
1<
3?
/
15
@
/
$
8

20

javac: execution time
!"se%&o()ess*)e !"se%+e,()ess*)e

-. &o()ess*)e -. +e,()ess*)e

20

21

javac: allocstalls and faults
javac

0

5

10

15

20

25

30

35

40 56 72 88 10
4

12
0

13
6

15
2

16
8

18
4

20
0

21
6

23
2

24
8

Heap Size (MB)

C
u

m
u

la
ti

v
e
 T

im
e
 (

s
e
c
)

Base allocstalls

Base major faults

IV alloc stalls

IV major faults

21

• Linux: Insert kernel module
↳Exports allocstall feedback

↳No need to modify MM, ensures integrity

• JikesRVM: Modify Heap Sizing Policy
↳Heap Sizing after every GC using feedback

↳No need for new GC algorithm

Design of IV Heap Sizing

22

Kernel

Kernel
Module

Memory Manager

allocstall

JikesRVM

Heap Growth Manager

countboolean

state

22

Conclusions

23

•Beneficial trade: GCs for Page Faults
↳ Trigger GC by resizing the heap

↳ Improves performance under memory pressure

↳ Doesn’t hurt when there is no pressure

•allocstall: effective predictor GC page faults
↳ Best performing given constraints

•Non-Intrusive Design
↳ No changes to the Memory Manager

↳ No changes to the Garbage Collector

23

Conclusions

24

•Beneficial trade: GCs for Page Faults
↳ Trigger GC by resizing the heap

↳ Improves performance under memory pressure

↳ Doesn’t hurt when there is no pressure

•allocstall: effective predictor GC page faults
↳ Best performing given constraints

•Non-Intrusive Design
↳ No changes to the Memory Manager

↳ No changes to the Garbage Collector

•Source Code available under GPL
24

Questions?
Chris Grzegorczyk

grze@cs.ucsb.edu

http://www.cs.ucsb.edu/~grze/ivhs

25

25

mailto:grze@cs.ucsb.edu
mailto:grze@cs.ucsb.edu
http://www.cs.ucsb.edu/~grze/ivhs/
http://www.cs.ucsb.edu/~grze/ivhs/

