

CGO'07, San Jose, California - March 2007

Heterogeneous Clustered VLIW Microarchitectures

Alex Aletà, Josep M. Codina, Antonio González and David Kaeli

Clustered Microarchitectures

- ☐ Challenges in processor design
 - Wire delays
 - Power consumption
- ☐ Clustering: divide the system into semi-independent units
 - Each unit ⇒ Cluster
 - Fast interconnects intra-cluster
 - Slow interconnects inter-clusters
 - Common trend in commercial VLIW processors
 - DSP/embedded domain

Clustered VLIW Architecture

Motivation

- Not all instructions have the same impact on execution time
- Divide resources
 - Performance oriented clusters
 - Higher voltages
 - Faster
 - Place critical instructions
 - Power oriented clusters
 - Lower voltages
 - Consume less power
 - Place non-critical instructions

Heterogeneous Microarchitecture

Motivation

Homogeneous

	CO	C1	C2	ICN
Cycle time	1	1	1	1

Scheduling

\	Cycle	CO	C1	C2	Bus
	0	A			
	1	В			Com A
	2	C	I	L	
	3	D	J	M	
	4	E	K	N	
	5	F	1	1	
	6	G			
	7	Н			

Motivation

Heterogeneous

	CO	C1	C2	ICN
Cycle time	1	2	2	1

Scheduling

1	Cycle	CO	C1	C2	Bus
1	0	A			
	1	В			Com A
_	2	C			
_	3	D	•	1	
_	4	E	J	M	
_	5	F	J	IVI	
_	6	G	К	N	
	7	Н		''	

Talk Outline

- ☐ Heterogeneous Clustered Architecture
- □ Proposed Compiler Techniques
- □ Experimental Evaluation
- **□** Conclusions

Heterogeneous Architecture

- ☐ Configured similar to a multiple clock domain design
 - O Domain boundaries:
 - Each cluster
 - Inter-connection Network
 - Memory hierarchy
- ☐ Each domain can use a different voltage / frequency
 - Performance oriented: higher voltage/frequency
 - Power oriented: lower voltage/frequency
- □ Communication between domains: synchronization queues

Heterogeneous Architecture

Distributed Control Path

- ☐ Fetch and decode units distributed among clusters
 - Instruction lay-out
 - Grouped by cluster

Centralized Control Path

Talk Outline

- ☐ Heterogeneous Clustered Architecture
- □ Proposed Compiler Techniques
- □ Experimental Evaluation
- □ Conclusions

Statically Scheduled Processors

- □ Performance relies on the compiler
 - Instruction scheduling
 - Register allocation
 - Clustered microarchitectures
 - Cluster assignment
 - Communications
- ☐ Multimedia and numeric code
 - Majority of the execution in loop bodies
 - Modulo scheduling

Modulo Scheduling

MS for Heterogeneous

Proposed Technique

Select Voltages and Frequencies

- ☐ For each domain
- □ At program level
- □ Consider different delays between fast and slow domains
 - Estimate execution time
 - Estimate energy consumption
 - Select minimum ED²

Estimate Execution Time

- □ Use profiling
 - $OT_{exec} = n_{iters} \cdot (II + SC 1) \cdot T_{cycle}$
- **□** Estimated IT
 - Enough to accommodate
 - All instructions
 - All recurrences
 - Value lifetimes of the profiled homogeneous
 - Communications required by the profiled homogeneous

Estimate Energy Consumption

- ☐ Same microarchitecture, different voltages
 - Relative dynamic power

$$\frac{P_{dyn_1}}{P_{dyn_2}} = \frac{p_1 \cdot f_1 \cdot C_L \cdot V_{dd1}^2}{p_1 \cdot f_2 \cdot C_L \cdot V_{dd2}^2} = \frac{f_1 \cdot V_{dd1}^2}{f_2 \cdot V_{dd2}^2}$$

Relative static power

$$\frac{P_{stat1}}{P_{stat2}} = \frac{\sqrt{W_0 \cdot W_1 \cdot 10^{-V_{th1}/S} \cdot V_{dd1}}}{\sqrt{W_1 \cdot 10^{-V_{th1}/S} \cdot V_{dd2}}} = 10^{\frac{V_{th2} - V_{th1}}{S}} \cdot \frac{V_{dd1}}{V_{dd2}}$$

MS Algorithm

IT= 7ns	II(C0)= 7 /1 = 7 cycles	II(C1)= 7 / 1.25 = 5.6 II(C1)= 7 / 1.3333 = 5.25 II(C1)= 7 / 1.5 = 4.667
IT= 8ns	II(C0)= 8 / 1= 8 cycles	II(C1)= 8 / 1.25 = 6.4 II(C1)= 8 / 1.3333 = 6

MS Algorithm

MS for Heterogeneous

- Multilevel graph partitioning algorithm
 - Coarsening
 - Place critical recurrences in fast clusters
 - Refinement
 - Estimate execution time and energy consumption
 - Optimize for ED²
- □ Scheduling

Instructions delayed due to synchronization hazards

Recurrence Constrained Loops

Large benefits expected

A small number of instructions are critical for execution time

- > 2-cycle latency instructions
- > 4 clusters, 1 FU per cluster

☐ Homogeneous

- Recurrence: 6 cycles
- II= 6 cycles (all clusters!) ☐> lots of unused slots

☐ Heterogeneous

- 1 fast cluster, cycle time= 1ns
- 3 slow clusters, cycle time= 2ns

Talk Outline

- ☐ Heterogeneous Clustered Architecture
- □ Proposed Compiler Techniques
- **□** Experimental Evaluation
- □ Conclusions

Experimental Environment

- Microarchitecture
 - Clusters
 - 4 clusters
 - 1 FP-unit, 1 INT-unit, 1 memory port, 16 registers per cluster
 - Inter-connection Network
 - 1-cycle latency broadcast buses
 - Heterogeneity
 - Clusters: 1 performance oriented / 3 power oriented
- **□** Benchmarks:
 - SpecFP2k Fortran programs
 - Loops obtained with ORC
- □ Baseline: homogeneous architecture

Results

High ILP Programs

- ☐ All instructions have a similar impact on execution time
 - No benefit using different frequencies
 - Higher IPC
 - Dynamic energy accounts for a majority of the total energy consumption
 - Use lower V_{dd} and lower frequencies
 - Memory hierarchy and inter-connection network can use different voltages

Talk Outline

- ☐ Heterogeneous Clustered Architecture
- □ Proposed Compiler Techniques
- □ Experimental Evaluation
- **□** Conclusions

Conclusions

- ☐ Heterogeneous clustered architectures
 - Clusters run at different voltages / frequencies
 - Instructions that impact execution time scheduled in fast clusters
 - Remaining instructions in power-oriented clusters
- □ Proposed compiler techniques
 - Algorithm to select the voltages / frequencies
 - MS for heterogeneous configurations
- □ ED²: 15% improvement on average
 - Up to 35% for selected programs

CGO'07, San Jose, California - March 2007

Heterogeneous Clustered VLIW Microarchitectures

Alex Aletà, Josep M. Codina, Antonio González and David Kaeli

Motivating Example

	C1	Bus	C2
0	Α		
1	В	Comm A	
2	С		E
3	D		

-			
	C1	Bus	C2
0	Α		
1	В	Comm A	
2	С		E
3	D		30/

Heterogeneous Architecture

□ Signals

Branch Instructions

- □ Branches decoupled in several instructions (Unbundled Branch Architecture)
 - Branch target computation
 - Independent in each cluster
 - Branch condition evaluation
 - Computed in one cluster
 - Broadcasted to the rest
 - Control transfer
 - Different in each cluster

Results

Recurrence Constrained Loops

Largest benefits obtained

- A small number of instructions are critical for execution time
- Improvement: 30% 35% for 189.lucas and 200.sixtrack

- > 2-cycle latency instructions
- > 4 clusters, 1 FU per cluster

☐ Homogeneous

- Recurrence: 6 cycles
- II= 6 cycles (all clusters!) ☐> lots of unused slots

☐ Heterogeneous

- 1 fast cluster, cycle time= 1ns
- 3 slow clusters, cycle time= 2ns

Smallest Benefits

- ☐ Around 5%
 - o 168.wupwise
 - Loops have different characteristics
 - 173.applu
 - Low number of iterations
 - Schedule length has a big impact