
David CallahanDavid Callahan
Distinguished Engineer

Parallel Computing Platform Team
Visual Studio

Microsoft

Why languages evolve:
� Programming languages capture design patterns

� Function calls/return
� Objects / Method Dispatch / Interfaces / Generic Programming
� Iterators (CLU v. C++ v. C#)
� Access to structured data (LINQ)� Access to structured data (LINQ)

� Design patterns change over time
� Increasing complexity with new abstraction conventions
� Domain-specific uses
� New programmer burdens

� Language constructs support application lifecycle
� Architecture/development
� Testing (especially defect analysis)
� Performance analysis (especially “the dialog”)
� Maintenance

3/12/2007 CGO-2007 2

Multicore is a new burden
� A least three design patterns demand support

� Services (aka Actors, CSP) – asynchronously evolving agents
with private state communicating via messages

� Forall – (opportunistic) nested data parallelism over partially-
ordered slices of data collectionsordered slices of data collections

� Transactions – unordered updates to shared state

� And this ignores locality….

� Language bindings facilitate engineering automation
� Load balancing

� Resource management

� Speculation / Deadlock-recovery

3/12/2007 CGO-2007 3

But, a new language?
� Yes: Isolation + Communication

� Many concepts: domains, processes , messages, channels,
contracts, choice, joins, data schema, time, new failure
modes

� This suggests a domain-specific language for “coordination”
interoperable across many existing languages

� No, new features:

� Forall must be tightly integrated

� Fewer concepts but interwoven with data abstractions

� Transactions should be tightly integrated to support forall

� Insufficient to handle just at the coordination level

3/12/2007 CGO-2007 4

3/12/2007 CGO-2007 5

