
David Chase

CGO 2007, San Jose, CA
2007-03-12

Yes, we need new
languages for
multicore computing

Page Copyright Sun Microsystems, 2007

Multicore needs new languages

Abundant, variable parallelism.

• Instead of higher clock rates, more cores
• Think 32-128, not 2-8
• No particular number of threads
> Lost to chip flaws
> Lost to other bottlenecks (L2 cache)
> Lost to other processes

• Workstealing is very effective; on-chip locality is
good enough

2

Page Copyright Sun Microsystems, 2007

Multicore needs new languages

Current popular languages
micromanage execution

• Parallel only when specified
• but mandatory parallelism when specified
> heavyweight threads
> exactly N threads

• Cannot say “I don’t care”
• Need more implicit parallelism
> Loops
> Function and operator inputs

3

Page Copyright Sun Microsystems, 2007

Multicore needs new languages

Need transactions instead of locks

• “Locks don’t compose”
• Locks are too hard for programmers, even with

today’s limited parallelism
• Deadlocks and bottlenecks scale non-linearly
• Locks are pessimistic and impede parallelism
• Little hope of understanding lock orders in a world

with implicit parallelism

4

Page Copyright Sun Microsystems, 2007

Multicore needs new languages

Must have a memory model
 and programmers must learn it.

5

SomeClass sharedThing; /* Should be volatile */

SomeClass getSharedThing() {
 if (sharedThing == null)
 synchronized (this) {
 if (sharedThing == null) {
 sharedThing = initialValue();
 /* Other threads may see non-null
 sharedThing, but stores from

 initialValue may not be flushed
 */
 }
 } /* Synchronized memory barrier here */
 return sharedThing;
}

Page Copyright Sun Microsystems, 2007

Multicore needs new languages

Side-effects should be unusual

• The Java Programming Language™, C, C++ --
mutable fields are the default case.
Immutable would be better for parallelism.
> Tool enabler
> Optimizer can work more locally

• Java Collections API -- all mutable; need immutable
variants.

• Applicative data structures are not necessarily any
slower (in one real test, 20% faster on a uniprocessor)

6

Page Copyright Sun Microsystems, 2007

Multicore needs new languages

Must have garbage collection

• Applicative data structures are difficult to manage
• Manual memory management in parallel is tricky and

often slow (e.g., consistent reference counting)
• GC is generally helpful
• GC simplifies tricky concurrent algorithms
• Lots of synergy between GC and transactions; the

cost is subadditive, you might as well enjoy the
benefits.

7

david.chase@sun.com

Yes, we need new
languages for
multicore computing

mailto:first.last@sun.com
mailto:first.last@sun.com

