
Are new languages 

necessary for multicore?

Edward A. Lee
Robert S. Pepper Distinguished Professor and
Chair of EECS, UC Berkeley

Position Statement for Panel
International Symposium on Code Generation and Optimization (CGO)

March 11-14, 2007, San Jose, California



The Buzz

“Multicore architectures will (finally) bring parallel 

computing into the mainstream. To effectively 

exploit them, legions of programmers must 

emphasize concurrency.”

Lee, Berkeley 2

emphasize concurrency.”

The vendor push:

“Please train your computer science students to 

do extensive multithreaded programming.”



Is this a good idea?

Lee, Berkeley 3

Is this a good idea?



My Claim

Nontrivial software written with threads, 

semaphores, and mutexes are 

Lee, Berkeley 4

semaphores, and mutexes are 

incomprehensible to humans.



Is Concurrency Hard?

Lee, Berkeley 5

It is not 

concurrency that 

is hard2



0It is Threads that are Hard!

Threads are sequential processes that 

share memory. From the perspective of 

Lee, Berkeley 6

any thread, the entire state of the universe 

can change between any two atomic 

actions (itself an ill-defined concept).

Imagine if the physical world did that2



Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the 

Lee, Berkeley 7

The programmer’s job is to prune away the 

nondeterminism by imposing constraints on 

execution order (e.g., mutexes) and limiting 

shared data accesses (e.g., OO design).



Do Threads Provide a Sound Foundation 

for Concurrent Programming?

� Imperative languages are 

fine. 

� Threads change everything 

(except syntax)

Lee, Berkeley 8

(except syntax)

� We can fix the problem at the 

software component level.

Note that this whole enterprise is 

held up by threads



Component Architecture Alternatives

Object Oriented vs. Actor Oriented

class name

data

methods

What flows through 

an object is 

sequential control

The established: Object-oriented:

Lee, Berkeley 9

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 

an object is 

evolving data

call return Things happen to objects

Actors make things happen



The Solution

Actor-oriented component architectures 

implemented in coordination languages that 

complement rather than replace existing 

imperative languages.

Lee, Berkeley 10

imperative languages.

See the Ptolemy Project for ongoing research addressing these 

problems: http://ptolemy.org


