Issues And Challenges In

Compiling

for Graphics Processors

AMDCH
' | Norm Rubin
ATi Fellow

Raoeon 4
AMD Graphics Products Group

AMD

Smarter Choice

What is the difference between a GPU and a CPU?

What is the programming model for graphics

— How do 20,000 people easily write high performance
parallel code?

Where does this compiler fit?

CGO 2008

ATI WhiteOut Demo [2007]

All the images in this talk were rendered from real-time demos.

CPU GPU

Lots of instructions little data
— Out of order exec
— Branch prediction — SIMD
— Hardware threading

Few instructions lots of data

Reuse and locality

Task parallel Little reuse

Needs OS Data parallel

Complex sync No OS

Latency machines .
Simple sync

Throughput machines

CGO 2008

The main difference is that gpu’s use multi-threading to tolerate latency, each time
you wait for a read, just start another thread, This works if there are lots of threads

Cinematic world: Pixar uses 100,000 min of compute per
min of image

Blinn's Law (the flip side of I'

Moore's Law):

— Time per frame is
~constant

— Audience expectation of
quality per frame is higher
every year!

— Expectation of quality increases
with compute increases

GPUs are real time — 1 min of compute per min of image
so users want 100,000 times faster machines

‘ CGO 2008

100,000 times faster for current pixar results, more needed next year

In entertainment-related computer graphics business, the amount of time that it takes to
compute one frame is constant over time. The reason is that audience expectation
increases at the same rate as computer power.

thread:

// load

rl = load (index)
// series of adds
ril=rl+rl
ril=rl+rl

Run lots of threads

Can you get peak performance/multi-core/cluster?
Peak performance = do float ops every cycle

‘ CGO 2008

This simple program is supposed to show a case where the gpu is much better then
the cpu

One iteration at a time Hard to prefetch data
Single CPU unit Multi-core does not help

Cannot reach 100% Cluster does not help
Limited number of outstanding

fetches

Wait for memory, gaps prevent peak performance
Gap size varies dynamically
Hard to tolerate latency

CGO 2008

The gap between fetch and the alu is the latency

AMD

Smarter Choice

Overlapped fetch and alu
Many outstanding fetches

R
=

I

ALU units reach 100% Lots of threads

utilization _ Fetch unit + ALU unit
Hardware sync for final Fast thread switch

Output In-order finish

‘ CGO 2008

The big bar at the top shows when the float units are running. It is 100% active if
there are enough threads

GPU
Internals

N

5\

N
N
N |

ATl MedViz Demo [2007]

One wavefront is 64 threads
Two Wavefronts/simd (running)
16 pe/simd

4 simd engines

8 program counters

512 threads running

2 wf SIMD

- e . ==

Vertex Fetch Seq

(Texture Fetch Seq D

Output

Once enough resources are
available a thread goes into the
run queue

16 instructions finish per simd
per cycle,
Each instruction is 5 way vliw

CGO 2008

Wavefronts are 64 thread units, they are also called warps

All resources are allocated at start, so no deadlock is possible

10

Each simd has 256 sets of registers
64 registers in a set (each holds 128 bits)

If each thread needs 5 (128 bit) registers, then 256/5 =
51 wavefronts can get into run queue

51 wavefronts = 3264 threads per SIMD or 13056
running or waiting threads

256 * 64 * 4 vector registers
256 * 64 * 4 *4 (32 bit registers) = 262,144 registers

Or 1 meg byte of register space

‘ CGO 2008

A thread is one pc/one group of registers, a wavefront is 64 threads

11

AMD

Smarter Choice

CPU: Loads determine performance
* Compiler works hard to

— Minimize ALU code

— Reduce memory overhead

— Try to use prefetch and other magic to reduce the amount of time
waiting for memory

GPU: Threads determine performance
e Compiler works hard to

— Minimize ALU code

— Maximize threads

— Try to reorder instructions to reduce synchronization and other
magic to reduce the amount of time waiting for threads

‘ CGO 2008

12

CPU part

for each frame (sequential) {
build vertex buffer
set uniform inputs
draw

by

This is producer consumer parallelism

Internal queue of pending draw commands (often
hundreds)

‘ CGO 2008

13

AMD

Smarter Choice

foreach vertex in buffer (parallel) {

call }

foreach set of 3 vertex outputs (a triangle) (seq) {
fixed function rasterize

foreach pixel (parallel) {
call

33

Nothing about number of cores

Nothing about sync

Developer just writes kernels (

‘ CGO 2008

14

Vertex shader output is directed to rasterizer

Rasterizer interpolates per-vertex values

Interpolated data sent per-pixel to the pixel shader
program

CGO 2008

Each box in the grid gets its own thread, thread count is determined by hardware
not by app, bigger screen means more threads

The whole system scales with bigger screen or more processors, without change

15

float4 ambient;
float4 diffuse;
float4 specular;
float Ka, Ks, Kd, N;
float4 main(float4 Diff : COLORO, float3 Normal: TEXCOORDO,
float3 Light : TEXCOORD1, float3 View : TEXCOORD2)
: COLOR

// Compute the reflection vector:
float3 vReflect = normalize(2*dot(Normal, Light)*Normal -

Light);

// Final color is composed of ambient, diffuse and specular
// contributions:
float4 FinalColor = Ka * ambient +
Kd * diffuse * dot(Normal, Light) +
Ks * specular * pow(max(dot(vReflect,
View), 0), N) ;
return FinalColor;

}

20 statements in byte code

‘ CGO 2008

\ What is the
- parallelism model?

17

AMD

Smarter Choice

Vertex and pixel kernels (shaders)
Parallel loops are implicit

Performance aware code does not know how many cores
or how many threads

All sorts of queues maintained under covers
All kinds of sync done implicitly

Programs are very small

‘ CGO 2008

18

AMD

Smarter Choice

All parallel operations are hidden via domain specific API
calls

Developers write sequential code + kernels

Kernel operate on one vertex or pixel

Developers never deal with parallelism directly

No need for auto parallel compilers

CGO 2008

19

AMD

Smarter Choice

Four versions — each done by experts to show of features
of the chip as well as develop novel forward-looking
graphics techniques

First 3 written in DirectX9, fourth in DirectX10

CGO 2008

All four demos have specific names, for a graphics talk I'd use the acutal names

20

Either the demo or movie goes here

CGO 2008

21

DX Pixel Shader Length

Triangles in 1000

c
k=l
7]
o
)
>
o
£
o)
°

di d2 d3

Num Pixel Shaders
demo 1= 140
demo 2= 163
demo 3= 312
demo 4 = 250

400

shader size

CGO 2008

Box and whisker plot of shader length, box is %2 std div around mean, line is 1 and
1/2 , outliers after this, size of max shader is growing, more control flow,

Inside graph is the max triangles in 1000 triangle units so the highest value is 2
million, number of shaders is the count, time or chip version is going up

d1l d2 d3 d4 are the demo numbers

We see a double exponent in growth, triangles and shader size, count does down
because of more control flow

The hor scale is in asm lines so an 800 asm line shader is a big one

22

AMD

Smarter Choice

Developers ship games in byte code
— Each time a game starts the shader is compiled

Compiler is hidden in driver
— No user gets to set options or flags

Compiler updates with new driver (once a month)
Compile done each time game is run
Like a JIT but we care about performance

SC runs on consoles/phones/laptops/desktops etc

‘ CGO 2008

23

AMD

Smarter Choice

About % code is traditional compiler, all the usual stuff

SSA form
Graph coloring register allocator
Instruction scheduler

But there is a lot of special stuff!

CGO 2008

24

AMD

Smarter Choice

HLSL compiler is written by Microsoft and has its own
idea of how to optimize a program

* Each compiler fights the other, so SC undoes the ms
optimizations

Hardware updates frequently so

* SC supports large number of targets, internally
(picture gcc done in c++ classes)

* One version of the compiler supports all chips

CGO 2008

25

-
o

26

AMD

Smarter Choice

A local allocator run as part of instruction scheduling
A global — Graph coloring allocator

(even though this is a JIT)

Two allocators for speed

CGO 2008

27

AMD

Smarter Choice

Less registers are better, because of threading

Load/store multiple takes same time as load/store so
spill costs are different

Registers hold 4 element vectors

CGO 2008

28

AMD

Smarter Choice

Two register allocators — hisl/manual vs SC

SC, which knows the machine usually needs less
registers

Register delta is not related to program size

But bigger programs need more registers

CGO 2008

29

Register effect by shader size

»
>
o
©

]
o
5}
g
S

)

3000 shaders

isa registers
‘ CGO 2008

Shows the delta in registers, hisl thinks the machine has vector registers and it
does, so hlisl does an ok job, | split the 3000 shaders into 6 groups by length

Smallest are lower left, biggest are upper right (lots of small one not so many large
ones)

A shader on the diag line means hlisl and sc used the same number of registers

A dot can be a lot a shaders if they overlap

30

AMD

Smarter Choice

Path aware allocation
If (run-time-const) {
call s1;

} else {

call s2;

}

Can we allocate high numbered regs to s2?

‘ CGO 2008

Problem is to allocate registers and then at run tim, if we know that s1 will always be
called just say the shader needs less registers and so it gets more threads

Handle this without recompiling

31

AMD

Smarter Choice

Modified list scheduler

Issues —

Grouping loads/fetches

Compiler control of thread switch

Loss of state at thread switch

Multiple ways to code operations,

final instruction selection in scheduler

CGO 2008

32

Scheduler effect by shader size

100 200 300 400 500

[T dlenaths | " lengths [lengths |

Up is better

Num cycles changed
by scheduling

=l
<
@
°
<}
o
2
S
)

100 200 300 400 500 100 200 300 400 500

scalu

CGO 2008

Here we have the same 3k shaders hlsl thiinks it is vector machine but is actually 5

way vliw, so the vector assignment does not work well

33

AMD

Smarter Choice

Bioshock: 2290 ps 4.222533

Call of Juarez: 594 ps 3.922494

Crysis: 284 ps 3.800968

LostPlanet: 83 ps 3.383631

Best would be 5.0

CGO 2008

These are 5 current dx games, number of pixel shader and average packing
in 5 way vliw issue

Dependence graph

35

CGO 2008

This is an actual graph generated by sc for a single basic block in a shader
computing perlin noise, the greedy list scheduler should have left some holes in the
schedule fror this case, | think this is clearly a hand or hisl unrolled loop, can we do
some fast graph analysis to figure out the structure?

36

Bug Report

Graphics

Shadow acne
Compiler

Round off error

This was a real bug report, | listed the two names for the error

37

norman.rubin @ amd.com

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States
and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks
of their respective owners.

©2006 Advanced Micro Devices, Inc. All rights reserved.

‘ CGO 2008

38

