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Abstract

Tuning programs for high performance architectures requires a cyclic approach based on performance analysis
and subsequent application of program transformations. Not only the communication and synchronization
overheads of parallel programs have to be analyzed and reduced, but also the compute performance of each
processor core.

While today’s compilers already apply powerful program transformation togenerate efficient code, fre-
quently, additional hand tuning can improve it. Thus, performance analysistools have to be available supporting
the programmer in the detection of inefficient code and its optimization. Currenttools are quite limited since
they only perform measurements based on the processor’s hardware counters.

This paper describes a new approach for performance analysis tools which combines static and dynamic infor-
mation. We formalize inefficient single core execution in form of Periscope’s performance properties. Detection
of these properties is based on MAQAO’s static information resulting from analyzing the program’s assembler
code, and on dynamic measurements taken during Periscope’s automated online performance analysis.

Keywords Performance analysis, program tuning, program transformations, tools

1. Introduction

Performance analysis tools for parallel programs focus on the parallel execution and neglect single node

performance. The best support they provide is the ability to perform measurements on the hardware performance

counters and to present the measured values without any explanation to theprogrammer.

On the other hand, many HPC application are well tuned with respect to parallel execution but use at most

10% 1 of the compute core’s peak performance. This gap is very significant and will probably become even

more important as the processor’s internal structure gets more and more complex.

Compilers, the main component in code generation for those processors, already are highly sophisticated.

They contain a large number of optimizations. They can apply complex optimizations to provide independent

1 http://www.lrz-muenchen.de/services/compute/hlrb/betriebszustand/performance/hlrb21week.html
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machine instructions to out-of-order processors, for example, or to schedule instructions such that memory

access latencies are hidden. These optimizations, often come from the research world, go through various stages

of refinement and applicability, before being included in real world compilers. Most of the optimization process

relies on heuristics. Sometimes, turning on all of the optimization flags results in a code which is slower than

just turning on a limited set of optimizations. Therefore, it is critical to be able to analyze the quality of the code

produced.

Performance analysis has made tremendous progress with the appearance of low level hardware counters

capable of tracking various events. Such counters are extremely helpful to locate performance bottlenecks: for

example poor data locality automatically generates high cache miss ratio which canbe easily captured. However

dynamic analysis does not allow to discover all of the potential performanceproblems. For example, missed

standardoptimizations such as constant propagation or common subexpression elimination can be detected on

the assembly code but not with the help of the hardware performance counters.

Based on this insight we combine static and dynamic analysis within an automatic performance analysis

process. First MAQAO performs an automatic static analysis and then the information is transferred to Periscope

which searches for performance bottlenecks taking into account MAQAO’s results.

MAQAO[13] analyzes plain assembly code and detects inefficiencies in the code due to various reasons, such

as, failing optimizing transformations in the compiler or obscure compiler decisions.

Periscope [4] is an automatic performance analysis tool, that searches for predefined performance properties

which are based on measurements during program execution. Combining those tools, thus enables a more

powerful analysis.

The rest of the paper is organized as follows. In the next two sections, we introduce MAQAO and Periscope.

Section 4 outlines our approach taken. Section 5 presents some of the new properties that have been written for

Periscope based on MAQAO’s analysis. Section 6 presents an experiment with a scientific code. The last two

sections present related works and some conclusions.

2. MAQAO

Gathering data and statistics is necessary for a performance tool, but it remains only a preliminary stage. The

most important step is to build a comprehensive summary for end-users and extract manageable information.

MAQAO [13] stands for Modular Assembly Quality Analyzer Optimizer. It computes the structure of the

assembly code, analyzes the application based on expert knowledge. Code pattern detection can be combined
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with hotspot detection or other dynamic analysis. As a result, it has a great potential in revealing the possible

flaws of the code generation. The concept behind this tool is to centralize all low level performance information

and build correlations. As a result, MAQAO produces more and better results than the sum of the existing

individual methods. Additionally, being based after the compilation phase allows a precise diagnostic of

compiler optimisation successes and/or failures.

MAQAOPROFILE[10] is a MAQAO module which allows us to give a precise weight to all executed loops,

therefore underscoring hotspots. Correlating this information provides the relevant metrics: (i) the hotpath at

run-time which passes through the whole program and where the applicationspends the most of its time. (ii)

the monitoring trip count is very rewarding. By default most of the compiler optimizations target asymptotic

performance. Knowing that a loop is subjected to a limited number of iterations allows us to choose the

optimizations characterized by a cold-start cost.

MAQAOAdvisor[11] implements a set of rules to help end-user to detect and understand performance

problems. It helps end-users to navigate through the code and isolate the particularly important or suspicious

pieces of code. For these isolated pieces which are the hot inner loops,MAQAOAdvisor: (1) suggests the

optimizations, improves the code quality and the performance, (2) provides as many guidances as possible

to help the decision making process. It can generate a report (file), assessing code quality and providing various

performance hints for all loops found in the code. This report is the inputfile of Periscope.

3. Periscope

Periscope is a scalable automatic performance analysis tool currently under development at Technische Uni-

versiẗat München. It consists of a frontend and a hierarchy of communication and analysis agents. Each of the

analysis agents, i.e., the nodes of the agent hierarchy, searches autonomously for inefficiencies in a subset of the

application processes.

The application processes are linked with a monitoring system that provides the Monitoring Request Interface

(MRI). The agents attach to the monitor via sockets. The MRI allows the agentto configure the measurements; to

start, halt, and resume the execution; and to retrieve the performance data.The monitor currently only supports

summary information.

The application and the agent network are started through the frontend process. It analyzes the set of

processors available, determines the mapping of application and analysis agent processes, and then starts the

application. The next step is the startup of the hierarchy of communication agents and of the analysis agents.
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After startup, a command is propagated down to the analysis agents to start thesearch. The search is performed

according to a search strategy selected when the frontend is started [5].The strategy defines an initial set

of hypotheses, i.e., properties that are to be checked in the first experiment, as well as the refinement from

found properties to a new set of hypotheses. The agents start from theset of hypotheses, request the necessary

information for proofing the hypotheses from the monitor, release the application for a single execution of a

repetitive program phase, retrieve the information from the monitor after theprocesses were suspended again,

and evaluate which hypotheses hold. If necessary, the found hypotheses might be refined and the next execution

evaluation cycle is performed.

At the end of the local search, the detected performance properties arereported back via the agent hierarchy

to the frontend. The communication agents combine similar properties found in their child agents and forward

only the combined properties.

Periscope starts its analysis from the formal specification of performanceproperties in the APART Specifica-

tion Language (ASL) [2]. The specification determines the condition, the confidence value and the severity of

performance properties. The analysis applied by Periscope for detecting inefficient single-node or better single-

core performance is an excellent example for the incremental search. Optimizing single-core performance is

critical for many applications since they usually reach only less than 10% of the peak performance of today’s

microprocessors.

The main source of information about the code’s efficiency with respect tothe execution pipeline and the

cache hierarchies of the performance counters available in all processors. The Itanium 2 used in the Altix

4700 at Leibniz Computing Center provides a powerful hardware facility for performance monitoring. It has 12

counters capable of counting a large set of events. A very important feature is its support for counting the stall

cycles occurring in the pipeline for different categories of events. These stall cycle counters are organized in a

hierarchy allowing to drill down on the causes of low performance.

The root of the stall cycle counter hierarchy is theBACK END BUBBLE ALL counter which determines the

number of lost processor cycles. Comparing this to the total number of cycles gives the severity of inefficiencies

in processor usage.

On the next level the following stall cycle counters are provided:

- BE FLUSH BUBBLE ALL: pipeline flushes e.g. due to branch misprediction

- BE L1D FPU BUBBLE ALL: e.g. slow L1D hits and TLB misses

- BE EXE BUBBLE ALL: inter-register dependencies or load instructions
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- BE RSEBUBBLE ALL: Register Stack Engine

- BACK END BUBBLE FE: Instruction fetches

The example bellow shows a performance property formalized in ASL.

PROPERTY BackEndStallCycles(Perf s){

CONDITION:s.BACK_END_BUBBLE_ALL > 1;

CONFIDENCE:1;

SEVERITY:s.BACK_END_BUBBLE_ALL/phase_perf.cycles; }

The condition determines whether the property holds, i.e., if any stall cycles occur. The confidence is 1 since

it is not only a hint for the property but a proven property based on measured performance data. The severity

returns the percentage of the entire execution time of a single execution of thephase lost due to stall cycles.

Figure 1. MAQAO and Periscope Integration

All the current properties in Periscope give the percentage of execution time lost by this property. This allows

to rank all the found properties and let the programmer start optimizing the code for the worst one.

Properties are implemented in Periscope in form of C++-classes.

4. Approach

The approach we are taking here is to formalize performance properties that combine static information from

analyzing the assembler code with MAQAO with dynamic information from the measurements during program

execution by Periscope and to automatically search for these properties in Periscope.

The approach is shown in Figure 1. The target compiler generates the assembler files. These files are then

analyzed by MAQAO which might already trigger some optimizations. MAQAO will then generate files with

the results from the static analysis. These files are read by Periscope andthe static information is taken into

account in the automatic performance analysis.

The approach allows bridging the gap between the code analysis providedby MAQAO and the dynamic

analysis performed automatically by Periscope.
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5. Performance Properties based on MAQAO’s information

In this section we give some examples for the new performance properties that are based on static information.

The properties are structured into three groups: (1) Properties for individual instructions. (2) Properties for up

to two bundles. (3) Properties for chuncks of bundles, e.g., entire innermost loops.

5.1 Properties for individual assembly instructions

This section includes properties that detect assembly code patterns basedon single instructions. We associate

with each property some hints concerning possible optimizations, depending on the compiler used. All the

properties in this paper are in the context of the Itanium 2.

Conversion Integer Float: On itanium 2, the FPU is coupled to the integer data path via transfer paths between

the integer and floating-point register files. Transferring values between floating-point and integer registers by

means of the getf and setf instructions. These tend to show up particularly in the use of mod instructions where

both arguments are variables. Also, address computations for multidimensional arrays are optimized via strength

reduction techniques which avoids most of the integer multiplies. If this technique is not ”correctly” applied,

there might be some remaining integer multiplies to be performed. On Itanium 2, integer multiplies are very

costly due to the lack of a specialized multiply integer unit: integers have first to be converted to floating point

(using setf/getf instructions), then the the multiplication is performed by the FP multiply unit, and finally the

result is converted back to integer.

PROPERTY ConversionIntegerFloat(Region r){

CONDITION: number(SETF/GETF) > 0;

CONFIDENCE:1;

SEVERITY: (((number(ANY)/number(SETF/GETF))* instances(ANY)

*maxcycles(SETF,GETF))/cycles(phase)*100; }

This property checks whether there are conversion instructions.number(SETF) returns the number of

occurrences of SETF in the loop body andnumber(ANY) returns the number of instructions.instances(ANY)

returns the number of issued instructions when executing the loop.cycles(phase) returns the number of

cycles spent in the phase which is currently under inspection by Periscope. Thus, the severity first calculates

the number of instances of SETF and GETF, multiplies this with the number of cycles for those operations and

compares it to the entire execution time of the phase.
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Inefficient loads and stores: Any instruction (load or store) accessing one, two or four bytes will havethe

same resources usage and cost as it’s 8 bytes counter part. Therefore it always recommended, to try to pack low

granularity accesses into eight bytes accesses.

PROPERTY Inefficient Loads){

CONDITION: instances(ld4 or ld2 or ld1) > 0;

CONFIDENCE:0.5;

SEVERITY:(instances(ld1)*cycles(ld1)*7/8 +instances(ld2)*cycles(ld2)*3/4 +

instances(ld4)*cycles(ld4)/2)/cycles(phase); }

The severity estimates the number of cycles that can be gained if the loads could be packed into 8 bytes loads.

The confidences is only 0.5 since it cannot be guaranteed that the loads access subsequent addresses.

Advanced Speculative Load:Advanced loads and the corresponding correction instructions (check.s) are

typically used when the compiler encounters a while loop structure or is unableto assert that two arrays refer

to two non intersecting memory regions. The usual correction for the latter case is to force (if this is valid) the

compiler to ignore dependencies between loads and stores, by using the -noalias flag for example.

PROPERTY Advanced Speculative Load){

CONDITION: number(StoresALAT) >0

CONFIDENCE: 1;

SEVERITY:(instances(StoresALAT)*3)/cycles(phase)*100; }

The severity is computed based on the instances of stores that are passedby the advanced load operations and

therefore have to go to the ALAT table at runtime. The number of instances is calculated as in theConversion

Integer Float property. The additional check makes the stores more expensive, hereestimated as 3 additional

cycles for the ALAT check.

Missing Prefetch Property: Due to the latency of memory accesses it is very beneficial to prefetch data early

enough so that they are available in the cache when they are accessed.

PROPERTY Missing Prefetch(Region r){

CONDITION: number (ld) - number(PREFETCH) > 0

CONFIDENCE: 0.5;

SEVERITY: BE_EXE_BUBBLE_ALL/cylces(phase)*100; }

This property checks whether there are more LD instructions in the given program region, e.g., an inner loop,

then PREFETCH instructions. Whether the missing prefetches are really a problem depends on whether the
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Accessed Banks Performance in cycles

0 0 0 0 (quadruple conflicts on bank 0) 2
0 0 1 0 (triple conflicts on bank 0) 2
8 0 8 0 (two double conflicts on bank 0 and 8)1.8
8 0 8 1 (double conflicts on bank 8) 1.8
8 0 9 1 (no conflict) 1

1. Bank Conflicts on the Itanium 2 Processor.

data are already in the cache. Thus the confidence is set to 0.5. Although not all of the stall cycles could be

eliminated by prefetch operations, the severity is based on the number of stallcycles for load operations which

can be measured with the counterBE EXE BUBBLE ALL. This time is compared to the cycles of the entire phase

of the execution for which Periscope checks the property.

5.2 Properties for two bundles of instructions

Potential L2 bank conflicts: It consists in counting couples of successive bundles with four memory instruc-

tions. On the Itanium 2 processor, 4 data accesses can be handled in onecycle if they target different banks in

the L2 cache and, more precisely, provided there are no conflicts among them or among earlier issued opera-

tions. Nevertheless, these conflicts are local and may only occur betweenoperations that are issued few cycles

apart (between load and stores operations) or issued at the same cycle (in the case of load/load operations or

store/store operations). The case will be very complex because many cases will be covered ranging from the

ideal case for distinct conflict.

PROPERTY Potential bundle bank conflict){

CONDITION: number(pairs of bundles with 4 loads)>0;

CONFIDENCE:0.3;

SEVERITY: instances(pairs of bundles with 4 loads)*2/cycles(phase)*100; }

The condition tests whether there are bundles in the loop body that might lead toa bank conflict. The severity

is again based on the dynamic instances that are estimated as in previous properties. We calculate two additional

cycles for a bank conflict.

5.3 Properties for entire loops

Bad Code Generated By Compiler:This property compares the number of issues with the theoretically

required minimum number of issues. This theoretical minimum of issues is computedby MAQAO from the
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L INE SEVERITY PROPERTY

657 19,0 Inefficient code generated by compiler
657 7,1 IA64 Pipeline Stall Cycles
657 5,8 Stalls due to waiting for data delivery to register
657 5,8 Missing prefetch instructions
657 4,7 Stalls due to waiting for FP register
657 4,1 L3 misses dominate data access
749 19,9 IA64 Pipeline Stall Cycles
749 18,4 Stalls due to waiting for FP register
749 15,8 L3 misses dominate data access
749 14,1 Stalls due to waiting for data delivery to register
749 14,1 Missing prefetch instructions
749 5,9 Stalls due to floating point exceptions or L1D TLB misses
749 5,5 Inefficient code generated by compiler
749 4,9 Stalls due to L1D TLB misses
749 4,8 Stalls due to hardware page walker
749 3,0 Advance speculative load instructions
780 11,9 Stalls due to waiting for FP register
780 11,1 IA64 Pipeline Stall Cycles
780 9,8 L3 misses dominate data access
780 8,3 Stalls due to waiting for data delivery to register
780 8,3 Missing prefetch instructions
780 4,1 Inefficient code generated by compiler

2. Single-node performance properties for subroutine VELO

MAQAO INFO L INE EXPLANATION

657 749 780
Issues 84 5 4 Number of issues estimated by compiler.
TheoBound 9 4 3 Minimal number of issues determined by MAQAO.
total instr 504 30 24 Number of instructions in loop body.
IntFloat 0 0 0 Number of SETFGETF operations.
tload-rpref 23 8 6 Estimated number of non prefetched loads.
load.a 0 1 0 Number of stores going to ALAT.
4load 5 1 1 Number of pairs of bundles that might lead to bank conflict.

3. Information for the three loops given from MAQAO to Periscope.

number of memory, floating point, and integer instructions. It ignores dependencies and other reasons that can

lead to NOP instructions in the bundles.
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PROPERTY BadCodeGeneratedByCompiler(Region r){

LET R1=number(issues) / theoretical_bound(issues)

CONDITION: R1 > 1.2;

CONFIDENCE: 0.1;

SEVERITY: ((1-1/R1)*cycles(r))/cycles(phase)*100; }

The confidence is in general quite small since many important aspects are ignored. In software pipelined

loops, due to the wealth of registers, the compiler is, in general, able to hide latencies between dependant

instructions by scheduling other instructions in between. Therefore, the theoretical bounds (taking into account

resource and issue unit usage) are fairly accurate and could be achieved by an appropriate instruction scheduling.

SWPLoop Dominated By Prolog Epilog: This property detects software pipelined loops where the cycles

for the prolog and epilog dominate the execution. This can happens if the overall number of loop iterations is

small. Code without software pipelining might be better. This property is an example for the third class related

to software pipelining.

PROPERTY SWPLoopDominatedByPrologEpilog(Region r){

CONDITION: NumberOfIterations(r)<ar.ec-1;

CONFIDENCE: 1;

SEVERITY: OverheadSWPLoop/cycles(phase)*100; }

The register ar.ec in the Itanium 2 assembler code specifies the number iterations in the prolog and epilog

of a software pipelined loop. If this is larger than the overall number of iterations, the loop is considered to be

suboptimal.

6. Experiments

As an example, we present a performance analysis of CX3D, a crystal growth simulation code from Forschungs-

zentrum J̈ulich [9]. It simulates the melting and crystallization process in the production ofsilicon wavers. The

crucible is modeled as a three dimensional array, i.e, the radius, the height and the angles are individually

discretized. For our experiments we used a discretization of (32, 92, 42)for (radius, angle, height). The radius

of the crucible is 3 cm and its height 4cm. The application consists of a time loop in which the temperature

distribution and the flow of the melt is simulated. The most time consuming part of the application taking more

than 80% of the execution time is the subroutineVELO. It computes the new 3D velocity vectors in each grid

point by iteratively solving the partial differential equation system.
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Table 2 summarizes the most important properties found for the loops in VELO.The list contains properties

that are purely based on Itanium’s performance counters, such asIA64 Pipeline Stall Cycles, as well as

those based on MAQAO’s static information possibly combined with dynamic information, such asMissing

prefetch instructions.

Table 3 presents the information provided by MAQAO to Periscope. This information is used in the properties

presented in Section 5. The following code presents the loops for which theproperties were detected by

Periscope. The first one in source line 657 is a long loop that contains manyoperations and references. The other

loops are shorter which is also reflected in the number of instructions shownin MAQAO’s static information.

657 ----------------------------

DO 4 K=2,N-1

DO 4 J=2,M

DO 4 I=2,LM1

UN(I,J,K) = U(I,J,K) + DT * ((V(I,J,K) + V(I+1,J,K) + V(I,J

X -1,K) + V(I+1,J-1,K)) ** 2 * 0.0625D0 * RPI(I) - (R3(I+1

...

WN(I,J,K) = W(I,J,K) + DT * (BT * (0.5D0 * (TT(I,J,K+1) +

4 CONTINUE

749 --------------------------------------

DO 105 K=2,N - 1

DO 105 J=2,M

do 105 i=2,LM1

DCHECK = (R1(I) * UN(I,J,K) - R2(I) * UN(I - 1,J,K)) * U1I(

* I) + (VN(I,J,K) - VN(I,J - 1,K)) * V1I(I) + (WN(I,J,K) - WN(

DP(I,J,K) = (-(BI(I) * DCHECK))

P(I,J,K) = P(I,J,K) + DP(I,J,K)

105 CONTINUE

780 --------------------------------------

DO 106 I=2,LM1

DO 106 K=2,N - 1

DO 106 J=2,M

UN(I,J,K) = UN(I,J,K) + DTDR * (DP(I,J,K) - DP(I + 1,J,K))

VN(I,J,K) = VN(I,J,K)+RFI(I)*DTDPHI*(DP(I,J,K) - DP(I,J + 1,K))

106 CONTINUE
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7. Related Work

Assessing precisely quality of compiled code is essential to deliver high performance. Nowadays there is a

lot of performance analysis tools/toolkits that focused on code analysis and optimization. But there are a very

few tools focussing at providing user with transformation code advices for performance tuning. Tools such as

foresys [14] or FORGExplorer [15] propose code analyses as wellas code transformations but no techniques to

identify the tuning transformation to use.

Davidson et al.[19], [20] has proposed a performance model, called MACS bounds, taking into account both

application and architecture specific parameters. Authors’s analysis on source and assembly codes provides a

series of performance bounds that explicitly identify the deliverable performance of the application and the

individual contributions of several factors to the performance degradation. For assessing code quality, detecting

bad code sequences is not enough, we need to build some “reference”metric: i.e. we need some way of

evaluating what an “optimal” compiler should have done. More precisely, wecompare performance metrics

computed on the generated code with “optimal” bounds. For that, we used a performance model introduced by

E.S. Davidson (MACS) which provides simple performance bounds which are useful for quantifying the quality

of the code produced.

Several projects in the performance tools community are concerned with the automation of the performance

analysis process. Paradyn’s [6] Performance Consultant automaticallysearches for performance bottlenecks

in a running application by using a dynamic instrumentation approach. Based on hypotheses about potential

performance problems, measurement probes are inserted into the runningprogram. Recently MRNet [7] has

been developed for the efficient collection of distributed performance data. The Expert [8] tool developed

at Forschungszentrum Jlich performs an automated post-mortem search for patterns of inefficient program

execution in event traces. Potential problems with this approach are large data sets and long analysis times for

long-running applications that hinder the application of this approach on larger parallel machines. Aksum [12],

developed at the University of Vienna, is based on a source code instrumentation to capture profile-based

performance data which is stored in a relational database. The data is then analyzed by a tool implemented

in Java that performs an automatic search for performance problems based on JavaPSL, a Java version of ASL.
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8. Conclusions

Performance analysis and optimization is an important part in the code development for high-performance

systems. The environment with a combination of MAQAO and Periscope allows toautomatically search for

predefined performance properties based on static and dynamic information.

The combined performance analysis environment is currently under development by the University of

Versailles and Technische Univeristät München. The current target architecture is the Itanium 2 processor which

is used in the Altix 4700 supercomputer at Leibniz Computing Centre.

While we currently concentrate on relative local code regions, i.e., inner loops, we plan to extend the work

to outermost loops and entire functions. In addition, we plan to feedback thedynamic information gathered by

Periscope into MAQAO to support its intelligent optimization module.
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