Detecting High-L evel Performance Properties based on MAQAO
and Periscope

Lamia Djoudi1], Michael Gerndg] and William Jalbya)

[1] Universite de Versailles
Laboratoire PRiISM, 45 avenue des Etats-Unis, 78035 Versailles Cedmce
[2]Technische Universitt Miinchen
Fakul@t fur Informatik 110, Boltzmannstr. 3, 85748 Garching, Germany
Tel: +33(0)1 39 25 43 43 - Fax +33 (0)1 39 25 40 57
Contact: lamia.djoudi@prism.uvsq.fr

Abstract

Tuning programs for high performance architectures requires a cyapimach based on performance analysis
and subsequent application of program transformations. Not only thencoication and synchronization
overheads of parallel programs have to be analyzed and redudealsbuithe compute performance of each
processor core.

While today's compilers already apply powerful program transformatiogetoerate efficient code, fre-
guently, additional hand tuning can improve it. Thus, performance anabgsshave to be available supporting
the programmer in the detection of inefficient code and its optimization. Cuwelst are quite limited since
they only perform measurements based on the processor’s hardwanters.

This paper describes a new approach for performance analysis tucls@@mbines static and dynamic infor-
mation. We formalize inefficient single core execution in form of Periscoperfformance properties. Detection
of these properties is based on MAQAQ’s static information resulting froatyaimg the program’s assembler
code, and on dynamic measurements taken during Periscope’s automategerformance analysis.

Keywords Performance analysis, program tuning, program transformations, tools

1. Introduction

Performance analysis tools for parallel programs focus on the parabelugon and neglect single node
performance. The best support they provide is the ability to performuneagnts on the hardware performance
counters and to present the measured values without any explanatiorptoghn@mmer.

On the other hand, many HPC application are well tuned with respect to papedi@ition but use at most
10% ! of the compute core’s peak performance. This gap is very significahtvélhprobably become even
more important as the processor’s internal structure gets more and nmopéego

Compilers, the main component in code generation for those proceskeeglyaare highly sophisticated.

They contain a large number of optimizations. They can apply complex optimigatigorovide independent

L http:/ww.Irz-muenchen.de/services/compute/hirb/betriebszustafatpence/hirb2lweek.html

1 2010/4/1

machine instructions to out-of-order processors, for example, or tedsitd instructions such that memory
access latencies are hidden. These optimizations, often come from thecheserld, go through various stages
of refinement and applicability, before being included in real world congildost of the optimization process
relies on heuristics. Sometimes, turning on all of the optimization flags resultsadeavehich is slower than
just turning on a limited set of optimizations. Therefore, it is critical to be abla#dyae the quality of the code
produced.

Performance analysis has made tremendous progress with the appeafréow level hardware counters
capable of tracking various events. Such counters are extremely htelpdeate performance bottlenecks: for
example poor data locality automatically generates high cache miss ratio whibk easily captured. However
dynamic analysis does not allow to discover all of the potential performpraddems. For example, missed
standardoptimizations such as constant propagation or common subexpression elimatibe detected on
the assembly code but not with the help of the hardware performancéscsun

Based on this insight we combine static and dynamic analysis within an automdbenpence analysis
process. First MAQAO performs an automatic static analysis and then tlimeion is transferred to Periscope
which searches for performance bottlenecks taking into account MAQ®GuIts.

MAQAQI13] analyzes plain assembly code and detects inefficiencies irotteedue to various reasons, such
as, failing optimizing transformations in the compiler or obscure compiler desision

Periscope [4] is an automatic performance analysis tool, that search@edefined performance properties
which are based on measurements during program execution. Combinsg ttals, thus enables a more
powerful analysis.

The rest of the paper is organized as follows. In the next two sectianmtroaduce MAQAQO and Periscope.
Section 4 outlines our approach taken. Section 5 presents some of theapasties that have been written for
Periscope based on MAQAQ’s analysis. Section 6 presents an experiitie scientific code. The last two

sections present related works and some conclusions.

2. MAQAO

Gathering data and statistics is necessary for a performance tool, bomaitnseonly a preliminary stage. The
most important step is to build a comprehensive summary for end-usersiaact enanageable information.
MAQAO [13] stands for Modular Assembly Quality Analyzer Optimizer. It cartgs the structure of the

assembly code, analyzes the application based on expert knowledig p@iern detection can be combined

2 2010/4/1

with hotspot detection or other dynamic analysis. As a result, it has a gresttjal in revealing the possible
flaws of the code generation. The concept behind this tool is to centrélinedevel performance information
and build correlations. As a result, MAQAO produces more and betteftseban the sum of the existing
individual methods. Additionally, being based after the compilation phase aliwrecise diagnostic of
compiler optimisation successes and/or failures.

MAQAOPROFILE[10] is a MAQAO module which allows us to give a precisegheto all executed loops,
therefore underscoring hotspots. Correlating this information provideselevant metrics: (i) the hotpath at
run-time which passes through the whole program and where the applisagos the most of its time. (ii)
the monitoring trip count is very rewarding. By default most of the compileéintipations target asymptotic
performance. Knowing that a loop is subjected to a limited number of iterationssalls to choose the
optimizations characterized by a cold-start cost.

MAQAOAdvisor[11] implements a set of rules to help end-user to detect and understaiotnpence
problems. It helps end-users to navigate through the code and isolatartioeillprly important or suspicious
pieces of code. For these isolated pieces which are the hot inner IBBE3AOAdvisor (1) suggests the
optimizations, improves the code quality and the performance, (2) provalesaay guidances as possible
to help the decision making process. It can generate a report (filegsiisg code quality and providing various

performance hints for all loops found in the code. This report is the ifilpuaf Periscope.

3. Periscope

Periscope is a scalable automatic performance analysis tool currently deddopment at Technische Uni-
versifat Minchen. It consists of a frontend and a hierarchy of communicationraadgsis agents. Each of the
analysis agents, i.e., the nodes of the agent hierarchy, searchesraatty for inefficiencies in a subset of the
application processes.

The application processes are linked with a monitoring system that provelb&athitoring Request Interface
(MRI). The agents attach to the monitor via sockets. The MRI allows the égeanfigure the measurements; to
start, halt, and resume the execution; and to retrieve the performanc@ldataonitor currently only supports
summary information.

The application and the agent network are started through the fronteegst It analyzes the set of
processors available, determines the mapping of application and analgatspagcesses, and then starts the

application. The next step is the startup of the hierarchy of communicationisaged of the analysis agents.

3 2010/4/1

After startup, a command is propagated down to the analysis agents to s&eathb. The search is performed
according to a search strategy selected when the frontend is startethisktrategy defines an initial set
of hypotheses, i.e., properties that are to be checked in the first expériasewell as the refinement from
found properties to a new set of hypotheses. The agents start fragettbéhypotheses, request the necessary
information for proofing the hypotheses from the monitor, release the afiplicfor a single execution of a
repetitive program phase, retrieve the information from the monitor aftguribeesses were suspended again,
and evaluate which hypotheses hold. If necessary, the found hgesthaght be refined and the next execution
evaluation cycle is performed.

At the end of the local search, the detected performance propertiespamted back via the agent hierarchy
to the frontend. The communication agents combine similar properties foundrirchiid agents and forward
only the combined properties.

Periscope starts its analysis from the formal specification of perforn@operties in the APART Specifica-
tion Language (ASL) [2]. The specification determines the condition, th&dmnce value and the severity of
performance properties. The analysis applied by Periscope for detautiificient single-node or better single-
core performance is an excellent example for the incremental seartimigdpg single-core performance is
critical for many applications since they usually reach only less than 10%egie¢bk performance of today’s
MIiCroprocessors.

The main source of information about the code’s efficiency with respetttet@xecution pipeline and the
cache hierarchies of the performance counters available in all payseShe Itanium 2 used in the Altix
4700 at Leibniz Computing Center provides a powerful hardware facditpérformance monitoring. It has 12
counters capable of counting a large set of events. A very importantréeia its support for counting the stall
cycles occurring in the pipeline for different categories of eventss@&lstall cycle counters are organized in a
hierarchy allowing to drill down on the causes of low performance.

The root of the stall cycle counter hierarchy is wCK_END_BUBBLE_ALL counter which determines the
number of lost processor cycles. Comparing this to the total number ofsayitles the severity of inefficiencies
in processor usage.

On the next level the following stall cycle counters are provided:
- BE.LFLUSH.BUBBLE _ALL: pipeline flushes e.g. due to branch misprediction
- BE.L1D_FPUBUBBLE ALL: e.g. slow L1D hits and TLB misses

- BE.EEXE_.BUBBLE_ALL: inter-register dependencies or load instructions

4 2010/4/1

- BE.RSEBUBBLE_ALL: Register Stack Engine

- BACK_END_BUBBLE_FE: Instruction fetches

The example bellow shows a performance property formalized in ASL.
PROPERTY BackEndStallCycles(Perf s){
CONDITION:s.BACK_END_BUBBLE_ALL > 1;

CONFIDENCE:1;

SEVERITY:s.BACK_END_BUBBLE_ALL/phase_perf.cycles; }

The condition determines whether the property holds, i.e., if any stall cyctas.ol'he confidence is 1 since
it is not only a hint for the property but a proven property based on urederformance data. The severity

returns the percentage of the entire execution time of a single executionpidke lost due to stall cycles.
Source Files
‘ Assembler

Files
‘ . . Found
Compiler ——% —» MAQAO Static Information »| Periscope M

Figurel. MAQAO and Periscope Integration

Transformations

Properties

®
o
c
<
£
S
b=
7}
o

All the current properties in Periscope give the percentage of exadirtie lost by this property. This allows
to rank all the found properties and let the programmer start optimizing theefoothe worst one.

Properties are implemented in Periscope in form of C++-classes.

4. Approach

The approach we are taking here is to formalize performance properiesaimbine static information from
analyzing the assembler code with MAQAQO with dynamic information from the nmeasents during program
execution by Periscope and to automatically search for these propertiessodpe.

The approach is shown in Figure 1. The target compiler generates #malass files. These files are then
analyzed by MAQAQO which might already trigger some optimizations. MAQAO wiintlyenerate files with
the results from the static analysis. These files are read by Periscopkeasthtic information is taken into
account in the automatic performance analysis.

The approach allows bridging the gap between the code analysis prdwdethQAO and the dynamic

analysis performed automatically by Periscope.

5 2010/4/1

5. Performance Properties based on MAQAQ’s information

In this section we give some examples for the new performance propediesréhbased on static information.
The properties are structured into three groups: (1) Properties fividodl instructions. (2) Properties for up

to two bundles. (3) Properties for chuncks of bundles, e.g., entirermostioops.

5.1 Propertiesfor individual assembly instructions

This section includes properties that detect assembly code patternsdmasiegjle instructions. We associate
with each property some hints concerning possible optimizations, dependititeacompiler used. All the

properties in this paper are in the context of the Itanium 2.

Conversion Integer Float: Onitanium 2, the FPU is coupled to the integer data path via transfer pathsipetwe
the integer and floating-point register files. Transferring values betfeating-point and integer registers by
means of the getf and setf instructions. These tend to show up particularly is¢hof mod instructions where
both arguments are variables. Also, address computations for multidimelresiyes are optimized via strength
reduction techniques which avoids most of the integer multiplies. If this teckngnot "correctly” applied,
there might be some remaining integer multiplies to be performed. On Itanium 2eintegdtiplies are very
costly due to the lack of a specialized multiply integer unit: integers have firg tmhverted to floating point
(using setf/getf instructions), then the the multiplication is performed by the FP tyultiit, and finally the

result is converted back to integer.

PROPERTY ConversionIntegerFloat(Region r){

CONDITION: number (SETF/GETF) > O;

CONFIDENCE:1;

SEVERITY: (((number (ANY)/number (SETF/GETF))* instances(ANY)

*maxcycles (SETF,GETF)) /cycles(phase)*100; }

This property checks whether there are conversion instructionsber (SETF) returns the number of
occurrences of SETF in the loop body andiber (ANY) returns the number of instructionshstances (ANY)
returns the number of issued instructions when executing the logfles (phase) returns the number of
cycles spent in the phase which is currently under inspection by Pegistbps, the severity first calculates
the number of instances of SETF and GETF, multiplies this with the number ofsdigrléhose operations and

compares it to the entire execution time of the phase.

6 2010/4/1

Inefficient loads and stores: Any instruction (load or store) accessing one, two or four bytes will hbaee
same resources usage and cost as it's 8 bytes counter part. Thérafaays recommended, to try to pack low

granularity accesses into eight bytes accesses.

PROPERTY Inefficient Loads){
CONDITION: instances(1ld4 or 1d2 or 1d1) > 0;
CONFIDENCE:0.5;
SEVERITY: (instances(1dl)*cycles(1d1)*7/8 +instances(1d2)*cycles(1d2)*3/4 +
instances(1d4)*cycles(1d4)/2)/cycles(phase); %
The severity estimates the number of cycles that can be gained if the lodd®egacked into 8 bytes loads.

The confidences is only 0.5 since it cannot be guaranteed that the s subsequent addresses.

Advanced Speculative Load: Advanced loads and the corresponding correction instructions ()eate
typically used when the compiler encounters a while loop structure or is utabksert that two arrays refer
to two non intersecting memory regions. The usual correction for the latterisdo force (if this is valid) the

compiler to ignore dependencies between loads and stores, by usingd#fiasiilag for example.

PROPERTY Advanced Speculative Load){
CONDITION: number (StoresALAT) >0
CONFIDENCE: 1;

SEVERITY: (instances (StoresALAT)*3) /cycles(phase)*100; }

The severity is computed based on the instances of stores that are lpaiseddvanced load operations and
therefore have to go to the ALAT table at runtime. The number of instancedcislated as in th@onversion
Integer Float property. The additional check makes the stores more expensiveedienated as 3 additional

cycles for the ALAT check.

Missing Prefetch Property: Due to the latency of memory accesses it is very beneficial to prefetchatita e

enough so that they are available in the cache when they are accessed.

PROPERTY Missing Prefetch(Region r){
CONDITION: number (1d) - number (PREFETCH) > 0O
CONFIDENCE: 0.5;

SEVERITY: BE_EXE_BUBBLE_ALL/cylces(phase)*100; }

This property checks whether there are more LD instructions in the giogmam region, e.g., an inner loop,

then PREFETCH instructions. Whether the missing prefetches are realbbkepr depends on whether the

7 2010/4/1

Accessed Banks | Performance in cycles

0 0 0 O (guadruple conflicts on bank 0) 2
0 0 1 O (triple conflicts on bank 0) 2
8 0 8 0 (two double conflicts on bank 0 and 81.8
8 0 8 1 (double conflicts on bank 8) 1.8
8 0 9 1 (no conflict) 1

1. Bank Conflicts on the Itanium 2 Processor.

data are already in the cache. Thus the confidence is set to 0.5. Althougli of the stall cycles could be
eliminated by prefetch operations, the severity is based on the number afystall for load operations which
can be measured with the counk®r EXE_BUBBLE_ALL. This time is compared to the cycles of the entire phase

of the execution for which Periscope checks the property.

5.2 Propertiesfor two bundles of instructions

Potential L2 bank conflicts: It consists in counting couples of successive bundles with four memadruaas
tions. On the Itanium 2 processor, 4 data accesses can be handledcyctmi they target different banks in
the L2 cache and, more precisely, provided there are no conflicts amemgahamong earlier issued opera-
tions. Nevertheless, these conflicts are local and may only occur betpeeations that are issued few cycles
apart (between load and stores operations) or issued at the sameiryhke ¢ase of load/load operations or
store/store operations). The case will be very complex because magg/wilsbe covered ranging from the

ideal case for distinct conflict.

PROPERTY Potential bundle bank conflict){
CONDITION: number(pairs of bundles with 4 loads)>0;
CONFIDENCE:0.3;

SEVERITY: instances(pairs of bundles with 4 loads)*2/cycles(phase)*100; }

The condition tests whether there are bundles in the loop body that might ladmhttk conflict. The severity
is again based on the dynamic instances that are estimated as in previarsigsop/e calculate two additional

cycles for a bank conflict.

5.3 Propertiesfor entireloops

Bad Code Generated By Compiler:This property compares the number of issues with the theoretically

required minimum number of issues. This theoretical minimum of issues is compyt’thQAO from the

8 2010/4/1

LINE | SEVERITY PROPERTY
657 19,0 | Inefficient code generated by compiler
657 7,1 | 1A64 Pipeline Stall Cycles
657 5,8 | Stalls due to waiting for data delivery to register
657 5,8 | Missing prefetch instructions
657 4,7 | Stalls due to waiting for FP register
657 4,1 | L3 misses dominate data access
749 19,9 | 1A64 Pipeline Stall Cycles
749 18,4 | Stalls due to waiting for FP register
749 15,8 | L3 misses dominate data access
749 14,1 | Stalls due to waiting for data delivery to register
749 14,1 | Missing prefetch instructions
749 5,9 | Stalls due to floating point exceptions or L1D TLB misses
749 5,5 | Inefficient code generated by compiler
749 4,9 | Stalls due to L1D TLB misses
749 4,8 | Stalls due to hardware page walker
749 3,0 | Advance speculative load instructions
780 11,9 | Stalls due to waiting for FP register
780 11,1 | 1A64 Pipeline Stall Cycles
780 9,8 | L3 misses dominate data access
780 8,3 | Stalls due to waiting for data delivery to register
780 8,3 | Missing prefetch instructions
780 4,1 | Inefficient code generated by compiler

2. Single-node performance properties for subroutine VELO

MAQAO INFO LINE EXPLANATION
657 | 749 | 780
Issues 84 5 4 | Number of issues estimated by compiler.
TheoBound 9 4 3 | Minimal number of issues determined by MAQAO.
totaLinstr 504 | 30| 24 | Number of instructions in loop body.
IntFloat 0 0 0 | Number of SETFGETF operations.
tload-rpref 23 8 6 | Estimated number of non prefetched loads.
load.a 0 1 0 | Number of stores going to ALAT.
4load 5 1 1 | Number of pairs of bundles that might lead to bank conflict.

3. Information for the three loops given from MAQAOQ to Periscope.

number of memory, floating point, and integer instructions. It ignores dkgreies and other reasons that can

lead to NOP instructions in the bundles.

9 2010/4/1

PROPERTY BadCodeGeneratedByCompiler (Region r){
LET Rl=number(issues) / theoretical_bound(issues)
CONDITION: R1 > 1.2;

CONFIDENCE: 0.1;

SEVERITY: ((1-1/R1)*cycles(r))/cycles(phase)*100; }

The confidence is in general quite small since many important aspects aredgin software pipelined
loops, due to the wealth of registers, the compiler is, in general, able to hiceikdebetween dependant
instructions by scheduling other instructions in between. Therefore, dloedtical bounds (taking into account

resource and issue unit usage) are fairly accurate and could beedthiean appropriate instruction scheduling.

SWPLoop Dominated By Prolog Epilog: This property detects software pipelined loops where the cycles
for the prolog and epilog dominate the execution. This can happens if thallavember of loop iterations is
small. Code without software pipelining might be better. This property is ampbesfor the third class related

to software pipelining.

PROPERTY SWPLoopDominatedByPrologEpilog(Region r){
CONDITION: NumberOfIterations(r)<ar.ec-1;
CONFIDENCE: 1;

SEVERITY: OverheadSWPLoop/cycles(phase)*100; }

The register ar.ec in the Itanium 2 assembler code specifies the numberiieiatibe prolog and epilog
of a software pipelined loop. If this is larger than the overall number oftiters, the loop is considered to be

suboptimal.

6. Experiments

As an example, we present a performance analysis of CX3D, a crystetigsimulation code from Forschungs-
zentrum dilich [9]. It simulates the melting and crystallization process in the productisiliobn wavers. The
crucible is modeled as a three dimensional array, i.e, the radius, the hamjhhe angles are individually
discretized. For our experiments we used a discretization of (32, 920d@adius, angle, height). The radius
of the crucible is 3 cm and its height 4cm. The application consists of a time loopizhwhe temperature
distribution and the flow of the melt is simulated. The most time consuming part opgiieation taking more
than 80% of the execution time is the subroutir#.0. It computes the new 3D velocity vectors in each grid

point by iteratively solving the partial differential equation system.

10 2010/4/1

Table 2 summarizes the most important properties found for the loops in VIEh®list contains properties
that are purely based on Itanium’s performance counters, sutA6asPipeline Stall Cycles, as well as
those based on MAQAQ's static information possibly combined with dynamicrirdton, such a¥issing
prefetch instructions.

Table 3 presents the information provided by MAQAO to Periscope. Thisnrdtion is used in the properties
presented in Section 5. The following code presents the loops for whicprtperties were detected by

Periscope. The first one in source line 657 is a long loop that containsopangtions and references. The other

loops are shorter which is also reflected in the number of instructions sihdWAQAQ'’s static information.

B57 ———m e mm o
DO 4 K=2,N-1
DO 4 J=2,M
DO 4 I=2,LM1
UN(I,J,K) = U(I,J,K) + DT * ((V(I,J,K) + V(I+1,J,K) + V(I,J
X -1,K) + V(I+1,J-1,K)) *x 2 % 0.0625D0 * RPI(I) - (R3(I+1
WN(I,J,K) = W(I,J,K) + DT * (BT * (0.5DO * (TT(I,J,K+1) +
4 CONTINUE
e
DO 105 K=2,N - 1
DO 105 J=2,M
do 105 i=2,LM1
DCHECK = (R1(I) * UN(I,J,K) - R2(I) * UN(I - 1,J,K)) * U1I(
* I) + (VN(I,J,K) - VN(I,J - 1,K)) * VII(I) + (WN(I,J,K) - WN(
DP(I,J,K) = (-(BI(I) * DCHECK))
P(I,J,K) = P(I,J,K) + DP(I,J,K)
105 CONTINUE
T80 —mmm

DO 106 I=2,LM1
DO 106 K=2,N - 1
DO 106 J=2,M

UN(I,J,K)

UN(I,J,K) + DTDR * (DP(I,J,K) - DP(I + 1,J,K))

VN(I,J,K)

VN(I,J,K)+RFI(I)*DTDPHI*(DP(I,J,K) - DP(I,J + 1,K))

106 CONTINUE

11 2010/4/1

7. Reated Work

Assessing precisely quality of compiled code is essential to deliver highrpemce. Nowadays there is a
lot of performance analysis tools/toolkits that focused on code analydisg@timization. But there are a very
few tools focussing at providing user with transformation code adviaegddormance tuning. Tools such as
foresys [14] or FORGEXxplorer [15] propose code analyses asas@bde transformations but no techniques to
identify the tuning transformation to use.

Davidson et al.[19], [20] has proposed a performance model, calle@$Bounds, taking into account both
application and architecture specific parameters. Authors’s analysisunoesand assembly codes provides a
series of performance bounds that explicitly identify the deliverableopmdnce of the application and the
individual contributions of several factors to the performance degi@u For assessing code quality, detecting
bad code sequences is not enough, we need to build some “refenmetet:; i.e. we need some way of
evaluating what an “optimal” compiler should have done. More preciselycamepare performance metrics
computed on the generated code with “optimal” bounds. For that, we usetbanp@nce model introduced by
E.S. Davidson (MACS) which provides simple performance bounds whehseful for quantifying the quality
of the code produced.

Several projects in the performance tools community are concerned withtthraation of the performance
analysis process. Paradyn’s [6] Performance Consultant automateaighes for performance bottlenecks
in a running application by using a dynamic instrumentation approach. Basagpotheses about potential
performance problems, measurement probes are inserted into the rpnogrgm. Recently MRNet [7] has
been developed for the efficient collection of distributed performanta. dde Expert [8] tool developed
at Forschungszentrum Jlich performs an automated post-mortem searpatterns of inefficient program
execution in event traces. Potential problems with this approach are lat@sets and long analysis times for
long-running applications that hinder the application of this approach gaerl@arallel machines. Aksum [12],
developed at the University of Vienna, is based on a source coderiresttation to capture profile-based
performance data which is stored in a relational database. The data isnthlgmeal by a tool implemented

in Java that performs an automatic search for performance problentsdragavaPSL, a Java version of ASL.

12 2010/4/1

8. Conclusions

Performance analysis and optimization is an important part in the code dmaogor high-performance
systems. The environment with a combination of MAQAO and Periscope alloasttmatically search for
predefined performance properties based on static and dynamic infaimatio

The combined performance analysis environment is currently undetogevent by the University of
Versailles and Technische UnivedstMiinchen. The current target architecture is the Itanium 2 processci wh
is used in the Altix 4700 supercomputer at Leibniz Computing Centre.

While we currently concentrate on relative local code regions, i.e., inopslove plan to extend the work
to outermost loops and entire functions. In addition, we plan to feedbaakyttemic information gathered by

Periscope into MAQAO to support its intelligent optimization module.

References
[1] Vtune performance analyzeraww.intel.com/software/products/vtune/

[2] T. Fahringer, M. Gerndt, G. Riley, and J.aff. Knowledge specification for automatic performancelysis.

Technical Report, www.fz-juelich.de/apa2001.

[3] T. Fahringer and C. Seragiotto. Aksum: A performancelysis tool for parallel and distributed applications.
Performance Analysis and Grid Computing, Eds. V. Getov, Btn@, A. Hoisie, A. Malony, B. Miller, Kluwer
Academic Publisher, ISBN 1-4020-7693-2, pp. 189;2003.

[4] M. Gerndt and K. Erlinger. Specification and detection of performance potd with ASL. Concurrency and

Computation: Practice & Experienc&9(11):1451 — 1464, August 2007.

[5] Michael Gerndt and Edmond Kereku. Search strategieadtmmatic performance analysis tools. In Anne-Marie
Kermarrec, Luc Boug, and Thierry Priol, editoEyjro-Par 2007 volume 4641 o£ NCS pages 129-138. Springer,
2007.

[6] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollgsworth, R.B. Irvin, K.L. Karavanic, K. Kunchithapadam,
and T. Newhall. The Paradyn parallel performance measuretoel. IEEE Computer, Vol. 28, No. 11, pp. 37,46
1995.

[7] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. M\et: A software-based multicast/reduction network for
scalable tools. IfProceedings of the 2003 Conference on Supercomputing (88), Bhoenix, Arizona, USA, Nov

2003.

[8] F. Wolf and B. Mohr. Automatic performance analysis ofohgd MPI1/OpenMP applications11th Euromicro
Conference on Parallel, Distributed and Network-Baseddessing, pp. 13 - 22003.

13 2010/4/1

[9] M. Mihelcic, H. Wenzl, H. Wingerath. Flow in Czochralskrystal growth melts.Technical Report i3l-2697,

Forschungszentruniilich, 1992.

[10] L. Djoudi, D. Barthou, O. Tomaz, A. Charif-Rubial, JTcuaviva and W Jalby The Design and Architecture of
MAQAOPROFILE: an Instrumentation MAQAO Modul/orkshop on EPICSan Jose, 2007.
[11] L. Djoudi, J. Noudohouenou and W. Jalby The Design anchAecture of MAQAOAdvisor: A Live Tuning Guide

international conference on high performance computing?®j 2008, India

[12] T. Fahringer and C. Seragiotto. Aksum: A performancalysis tool for parallel and distributed applications.
Performance Analysis and Grid Computing, Eds. V. Getov, Btn@t, A. Hoisie, A. Malony, B. Miller, Kluwer
Academic Publisher, ISBN 1-4020-7693-2, pp. 189;2003.

[13] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J-T.cu@mviva, W. Jalby MAQAO: Modular Assembler Quality
Analyzer and Optimizer for Iltanium ®orkshop on EPICSan Jose, 2005.

[14] FORESYS, FORtran Engineering SY Stem. http://wwwasatie/pages/foresys.htm.
[15] FORGEXxplorer. http://www.apri.com/
[16] VTune Performance Analyzer http://www.intel.confte@re/products/vtune

[17] A. Monsifrot and F. Bodin Computer aided hand tuning ¢€B: applying case-based reasoning to performance

tuning ICS '01: Proceedings of the 15th international conferennesopercomputing, 2001

[18] A. Srivastava and A. Eustace. ATOM - A System for Builgli@ustomized Program Analysis Tools. PLDI 1994:
196-205

[19] Eric L. Boyd, Geith A. Abandah, Hsien-Hsin Lee and Ed&v&. Davidson, Modeling Computation and
Communication Performance of Parallel Scientific Applimas: A Case Study of the IBM SP2, Supercomputing
'95

[20] Eric L. Boyd, Wagar Azeem, Hsien-Hsin Lee, Tien-Paoh$i8hih-Hao Hung and Edward S. Davidson, A
Hierarchical Approach to Modeling and Improving the Perfance of Scientific Applications on the KSR1
Proceedings of the 1994 International Conference on RhRMbcessing (ICPP), St Charles, il. 1994.

14 2010/4/1

