
Improving selective scheduler approach with predication

and explicit data dependence support

Dmitry Melnik, Alexander Monakov, Andrey Belevantsev,

Tigran Topchyan, and Mamikon Vardanyan ∗

Abstract

The global instruction scheduler and software pipeliner implemented by ISP RAS

for the GCC compiler based on the selective scheduler has some deficiencies. Among

some of the important ones we can name the absence of predication support for IA-64

and the usage of implicit data dependencies (i.e., no data dependence graph (DDG)

is constructed and supported in the process of scheduling, but rather the elementary

operation of moving an instruction up through another one is supported). This paper

describes how we deal with both deficiencies, first, by adding predication support to

the scheduler as yet another variant of an instruction transformation, which is a novel

contribution of the paper, and second, by suggesting the explicit DDG construction and

maintenance algorithm within the created scheduling framework in the GCC compiler,

∗Institute for System Programming of Russian Academy of Sciences, {dm, amonakov, abel, tigran,

mamikon}@ispras.ru

1



which is also our contribution and the novel improvement of the original selective

scheduling approach.

1 Selective scheduler in GCC

The selective scheduler [7] is a top-down scheduler operating on arbitrary acyclic regions

of code and supporting several scheduling boundaries. For each boundary, it computes a

set of available instructions by walking a region in reverse topological order, heuristically

chooses the best instruction among them, and then moves it from its original location

(or multiple original locations, if those are found while traversing code motion paths) to

the current scheduling boundary, generating bookkeeping copies on the fly if needed. The

scheduling boundary is then moved down (and split into two boundaries on branches) and

the process is repeated until all instructions from the region are scheduled.

To overcome dependencies, selective scheduling supports several instruction transfor-

mations. It can perform substitution through register copies to overcome true dependencies

and register renaming to overcome anti- and output dependencies. On IA-64, implemen-

tation for GCC also generates control and data speculative loads to overcome control

dependencies and some of the memory true dependencies [2]. Substitution and speculation

can be named local transformations, that is, they are applied for breaking a dependency

immediately after it is found during available instructions’ computation, while register re-

naming and bookkeeping are global ones (require information about possible code motion

2



paths to be correct).

The selective scheduler can also perform software pipelining on cyclic regions by al-

lowing code motion from already scheduled code. This is achieved by moving instructions

across a loop back-edge and generating bookkeeping code in a loop preheader, thus forming

the prologue of the newly pipelined loop. The number of loop iterations is not preserved,

so control speculation support is needed to pipeline a memory load. The original algorithm

also generates the epilogue by moving up conditional jumps that exit a loop and effectively

pushing some instructions (that a jump was moved up through) down to both targets of

the jump including a loop exit, but this transformation is not implemented in GCC. More

details about GCC implementation specifics can be found in [2], [5], [3], and [4].

2 Predication support in the selective scheduler

2.1 Conditional execution on IA-64

Itanium architecture features full predication support, which means that most instructions

may be annotated with a 1-bit predicate register, and execution of the predicated instruc-

tion will affect processor state iff its predicate register evaluates to 1 at runtime. Some

other processor architectures provide partial support for conditional execution, for example

by providing conditional moves.

Support for conditional execution allows to eliminate branches, which results in smaller

code and reduces pipeline flushes from mispredicted branches. It also helps to increase us-

3



age of available execution units, and allows to start long-latency instructions (for example,

loads from memory) earlier. However, careful compiler implementation is essential, be-

cause converting too much instructions into predicated form may result in lower quality

code because of resource over-subscription.

2.2 GCC implementation

We present an approach to transform instructions into predicated form during instruction

scheduling pass. This approach benefits from knowledge of unused processor units, to

which predicated instructions may be assigned. The implementation is done in the selective

scheduler, where it fits neatly as an additional form of instruction transformation.

Instructions in predicated form are added into availability sets when merging the sets

on conditional branches, contrary to the other local transformations happening when a

set is moved up through an instruction. The reason for this is that we need to know the

branch target that originated the instruction so that we can predicate the instruction with

the correct condition. For the same reason, predication support does not use the local

transformation cache that is implemented to speed up the computation phase. Instead, a

separate cache is implemented that can be queried using an instruction-condition pair, so

that instruction forms with both the initial predicate and its inversion can be conveniently

stored. Also, to propagate the newly predicated instructions further up, the dependency

analysis of the scheduler is modified to allow moving predicated instructions through con-

ditional jumps with the same or inverted predicate (even for possibly trapping instructions

4



like loads), unless the predicated instruction modifies the predicate register that guards

the jump.

The selective scheduler performs code motion stage to generate necessary bookkeeping

copies and to update the available instructions and other dataflow information (like register

liveness). We have made three modifications to support predication on this stage. First,

we are traversing code motion paths while looking for instructions that could generate the

chosen one. When we search for a predicated instruction and we process a conditional jump

guarded by the same predicate register, we need to proceed with the search only down the

branch target that satisfies the condition of the predicated instruction. This follows from

the fact that the instruction will never be executed down on the branch target with the

inverted predicate.

Second, during code motion the same local transformations as when computing avail-

ability sets should be performed, as bookkeeping copies should be created out of the correct

instruction form. As predication does not happen together with other local transforma-

tions, we cannot use the regular propagation engine for this purpose as we did previously.

Thus, we have implemented a separate routine for reapplying local transformations. It

reuses the same transformation history as another function for undoing transformations,

which was implemented earlier to speed up moving the chosen instruction down from

scheduling boundary while searching for original instructions. Predication support for

history management functions was also implemented.

Third modification is required because of the bookkeeping code generation process. The

5



original selective scheduling approach finds all original instructions of the one chosen for

scheduling and removes them, also including bookkeeping copies possibly generated during

the same code motion process. This is required for correctness, because the scheduler

doesn’t know the places where bookkeeping copies would be generated, but rather it creates

them on the fly at any control flow join point it traverses, relying on the unnecessary copies’

removal to avoid executing the chosen instruction more than once on some control flow

paths. When the chosen instruction is predicated, its original instructions found during

code motion process should not be removed, but each of them should rather be predicated

with the inverted condition of the chosen instruction. In addition, we must ensure that

the predicate register is not clobbered along the code motion paths between the scheduling

point and the original instruction(s). Currently, tracking availability of predicate registers is

not implemented, so we disallow moving predicated instructions through jumps predicated

with different registers to retain correctness.

As predication does not affect live ranges of registers, the merging routine is also mod-

ified so that the availability of the target register in predicated assignments is inherited

from the original non-predicated instruction. Correctly storing this information allows

scheduling the assignment originated from the certain branch target before scheduling the

branch itself without renaming the target register even in the situations when the register

is live on the other branch target.

The implementation allows arbitrary interaction with other transformations. First,

predicated instructions may be subject to substitution when moving up through a register

6



copy that is executed either unconditionally or guarded with the same condition. Second,

the target register of a predicated instruction can be renamed. This is achieved by making

a predicated instruction separable, i.e. having a left-hand side and a right-hand side, which

are assigned equal to the corresponding sides of the original instruction, of course only

in case when the original unpredicated form is also separable. Third, predicated memory

loads may be speculated in case they are being moved through more than one conditional

branch.

Predication support also improves pipelining quality of the selective scheduler in sev-

eral ways. First, predication allows avoiding unnecessary speculation when a memory load

is pipelined (i.e. moved up along a loop back edge), thus removing the need of creating

speculative check instructions. Second, unnecessary renaming is also avoided as when the

target register of an instruction is live on a loop exit, the instruction predicated with the

inverted condition of this exit does not destroy the contents of this register. Third, pipelin-

ing instructions via predication will not result in unnecessary code execution, because on

the last iteration of the loop the pipelined instruction predicate will be false, and this will

account for the extra execution of its bookkeeping copy in the loop prologue.

Preliminary testing was done on the SPEC CPU 200 benchmarks. The baseline opti-

mization level was -O3 -ffast-math1. We have made two peak level runs, both of which

enabled predication support, and one of the runs also had the doloop pass disabled. The

doloop pass makes use of the br.cloop instruction, which does not take into account any

1
-O3 enables the selective scheduler on Itanium by default since GCC 4.4.

7



predicate registers, so predication cannot be used together with pipelining in this case.

Disabling the doloop pass increases performance for the integer benchmarks and decreases

performance for the floating point benchmarks.

The average performance increase is very slight in both cases (˜0.5%), with notable

speedups of twolf (1.3%), swim (2.6%), galgel (1.5%), and sixtrack (2.5%) with the en-

abled doloop pass, and of eon (2.5%), twolf (1%), swim (2.6%), applu (1.5%), mesa (1.6%),

facerec (1.8%), and sixtrack (1.2%) with the disabled doloop pass. There is no sig-

nificant degradations with the enabled doloop pass, however, there are degradations of

wupwise (-3.2%) and ammp (-1.3%) with the disabled doloop pass. The main source of

speedup is likely the ability to pipeline loops without transforming the loads into the spec-

ulative form. Disabling the doloop pass or making it play well with the predication support

may be an option in case the performance degradations will be fixed.

3 Supporting explicit data dependence graph

The original selective scheduling approach [7] doesn’t require an explicit data dependence

graph, but rather relies on the process of incremental construction of availability sets, where

on each step a decision is made locally on whether the given instruction can be scheduled

before another in a certain form. However, there is a number of enhancements to the core

selective scheduling algorithm, which effective implementation requires an explicit data

dependence graph (DDG).

8



First, the heuristics used at each step of the algorithm to choose the best instruction can

be improved. Currently, code transformations like register renaming or control speculation

may increase the critical path length of the loop region when doing pipelining. This may

result in a performance degradation when the processor stalls execution on a register move

or on a speculative check instruction, waiting for the memory load of one of the arguments

to complete. To prevent this, the effects of generating new instructions during aggressive

code transformations should be estimated, which involves walking def-use chains to estimate

how much the transformation would delay scheduling consumers of the original instruction.

Also, scheduling priority of instructions can be calculated by using enhanced G∗ [6] or

speculative yield [8] heuristics, designed especially for interblock scheduling in presence of

speculative transformations. To implement those, we also need traversing DDG to estimate

the dependence tree height. Second, by design the selective scheduling algorithm can leave

excessive register copy operations, which should be removed by a simple copy propagation

pass at scheduling time. And third, the algorithm is pretty slow, since on each step it

requires the local data dependence analysis between the current instruction on a code

motion path and the previously computed availability set.

All described problems can be addressed by adding support for explicit data depen-

dence graph (DDG). Given the large number of code transformations and new instructions

generated during the selective scheduling, DDG should be updated incrementally with

each such transformation. The problem can be formulated as follows. For the given acyclic

program region the data dependence graph is constructed, which is a full bi-directional

9



dependency graph with nodes corresponding to program region instructions. Two nodes

are connected with an edge iff corresponding instructions have a data dependence between

them. Each edge is attributed a dependence type, parts of instructions that have a depen-

dence and the register (or memory location) that causes a dependence. For each of valid

code transformations the selective scheduling applies (instruction move, unification of ex-

pressions, generation of bookkeeping, forward substitution, register renaming, data and

control speculation, predication) a corresponding transformation for the data dependence

graph is applied so DDG is consistent at any scheduling point. Also, this dynamically up-

dated DDG should include not only every scheduled instruction, but also those instructions

not yet scheduled and residing in availability sets.

DDG transformations fall in two categories: those which are performed when comput-

ing availability sets, and those performed when moving instructions across basic blocks or

emitting new instructions. Transformations from the first group are easier to implement,

since most transformations performed at the stage of moving expression up to the schedul-

ing point are aimed at removing dependencies (except for unification, when expressions

coming from different control paths are merged into one), and the new dependencies intro-

duced at this stage can be copied from the instruction the expression is moved through.

E.g. when performing forward substitution of expression a : r2 ∗ r3 through instruction

b : r3 = r5, in the resulting expression a′ : r2 ∗ r5 all dependencies with instruction a by

register r3 (including the true dependence from b) are eliminated, and all dependencies

with instruction b by r5 are copied to a′.

10



The difficulty with transformations from the second group is that emitting new instruc-

tions with destination registers different from original ones (those are chosen arbitrarily

from the set of free registers across code motion paths) may result in new anti or output

dependencies with instructions not involved in the current transformation. E.g. generating

bookkeeping code on one of incoming edges with the new destination register will intro-

duce an anti dependence with instructions that were reading from this register. The same

problem applies to moving instructions that write in memory. So when emitting instruc-

tion with the renamed destination register or moving instruction with a side effect to a

basic block where this effect becomes exposed to different execution paths, we generate

the appropriate dependencies with instructions on those paths that read/write the same

register (or memory location). To generate such dependencies, we use a reverse lookup

table indexed by a register number (or a memory location) containing region instructions

that read (write) that location. Also, the memory alias graph derived from previous GCC

optimizations is used.

While some scheduler transformations belong only to the first category (e.g. forward

substitution), most require DDG transformations on both stages of scheduling. E.g. register

renaming and data speculation involve removing data dependencies on the stage of avail-

ability set construction and generation of new dependencies when emitting a speculation

instruction with the renamed destination register, recovery code, and changing register in

the original instruction. The most complex part of the DDG update (creating and splitting

nodes with partial transfers of dependencies, as well as searching for dependent nodes not

11



directly involved in transformation) happens only when actually scheduling the instruc-

tion, while supporting DDG nodes for expressions in availability sets comes pretty simple.

Due to the paper size constraints we don’t strictly describe all the DDG transformations

in detail, but most DDG transformations are naturally derived from transformations done

to expressions during computation of availability sets.

4 Conclusions

We have presented novel improvements to the selective scheduling approach, including

predication transformation support and explicit data dependence graph support. The for-

mer improvement has been implemented in the GCC compiler, yielding moderate speedups

on some of SPEC CPU 2000 tests. The DDG construction and update support has been

developed and is in the process of implementing in GCC. We plan to finish the implemen-

tation soon and then to proceed with improving the scheduling heuristics as sketched in

the previous section.

References

[1] Alfred Aburto’s system benchmarks. Could be found at

ftp://gd.tuwien.ac.at/perf/benchmark/aburto

[2] Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik, and

Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler for GCC. In

12



Proceedings of GCC Developers’ Summit, Ottawa, Canada, June 2006.

[3] Andrey Belevantsev, Maxim Kuvyrkov, Alexander Monakov, Dmitry Melnik, and

Dmitry Zhurikhin. Implementing an instruction scheduler for GCC: progress,

caveats, and evaluation. In Proceedings of GCC Summit 2007, Ottawa, Canada, July

2007, pp. 7-21.

[4] Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC instruction

scheduler and software pipelining on the Itanium platform. 7th Workshop on

Explicitly Parallel Instruction Computing Architectures and Compiler Technology

(EPIC-7). Boston, MA, USA, April 2008.

http://rogue.colorado.edu/EPIC7/avetisyan.pdf

[5] Andrey Belevantsev, Dmitry Melnik, and Arutyun Avetisyan. Improving a selective

scheduling approach for GCC. GREPS: International Workshop on GCC for

Research in Embedded and Parallel Systems, Brasov, Romania, September 2007.

http://sysrun.haifa.il.ibm.com/hrl/greps2007/

[6] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. R. Rau, and M. Schlansker.

Profile-driven instruction level parallel scheduling with application to superblocks. In

Proceedings of the 29th Annual IEEE/ACM International Symposium on

Microarchitecture (Micro-29), Paris, 1996, pp. 58-67.

13



[7] Soo-Mook Moon and Kemal Ebcioğlu. Parallelizing Nonnumerical Code with

Selective Scheduling and Software Pipelining. ACM TOPLAS, Vol 19, No. 6, pages

853–898, November 1997.

[8] R. A. Bringmann. Enhancing instruction level parallelism through

compiler-controlled speculation. Ph.D. dissertation, University of Illinois at

Urbana-Champaign, 1995.

14


