
EPIC-8, April 24, 2010

An unsophisticated cooperative

approach to prefetching linked

data structures

Alexander Galazin

Murad Neiman-zade

JSC “MCST”, Moscow

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Motivation

 Pointer-based applications significantly lack

performance due to irregularity of memory

access patterns

 There is no information on how linked data

structures addresses evolve in major

applications

 Existing approaches propose sophisticated

cooperative techniques with great modifications

in CPU

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Background

App Procedure %Tapp Data Misses

181.mcf flow_cost 53.7% 94.2%

update_tree 15.8% 95.1%

197.parser xfree 7.0% 43.6%

table_pointer 3.6% 59.4%

254.gap CollectGarb 9.4% 82.4%

300.twolf new_dbox_a 17.3% 71.0%

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Studying LDS Traversal

• Discover LDS traversal

• Collect , where addr –

address with which LDS traversal operates, i-

loop iteration and k={1..16}

k i k iaddr addr

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

LDS Traversal Behavior

• 181.mcf

– flow_cost: 2 addresses in LDS and only 1 if k is
fixed

– update_tree: 3 in 97%

• 197.parser

– xfree: 1 in 90%

– table_pointer: 3 in 49%

• 254.gap

– CollectGarb: 2 in 96%

• 300.twolf

– new_dbox_a: 3 in 98%

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Our method

• Architectural support

– New instruction IsOperandsNotReady

• Compiler support

– Discover LDS traversal

– Inject prefetching code

– Create compensating nodes

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Architectural support

• IsOperandsNotReady(TI)

– returns TRUE if any

of the operands of TI

are not ready

– otherwise FALSE

– is always scheduled

together with TI in the

same wide instruction

and requires 1 logical

unit.

C-code

while(a)

{

a=a->next;

}

ASM-code
{

cmpesb,1 %r0, 0, %pred1

pass %ionr1, %pred5

}

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Compiler support. Preparation
• for each LD we create a

global array for keeping 3
most popular and their
frequencies;

• we keep a history of
addresses for the load for
D iterations;

• in the preloop we load all
elements of the array to
registers

• in the postloop we save
values of 3 top and
their frequencies in the
array;

LD r1 → r1

ST arr[i] ← di

ST arr[i+1] ← fi

LD arr[i] → di

LD arr[i+1] → fi

LD r1 → r1

HISTORY(r1)

MOV r1i → ri

…

MOV r1i+k → r(i+k)

HISTORY(r1)

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Compiler support. Prefetching

• in the loop head we create

prefetches for (A+) where

A is the address of the LD

on the current iteration;

• after the USE of LD result

we add

IsOperandsNotReady and

branch which transfer

control to a compensating

node;

LD r1 → r1

MOV r1i → ri

…

MOV r1i+k → r(i+k)

HISTORY(r1)

ST arr[i] ← di

ST arr[i+1] ← fi

LD arr[i] → di

LD arr[i+1] → fi

LD r1 → r1; USE(r1)
HISTORY(r1)

PREFETCH(r1+d1)

PREFETCH(r1+d2)

PREFETCH(r1+d3)

IsONR(USE) → P

BRANCH cn P

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Compiler support. Calculating
• in the compensating node we

calculate S – the difference
between current load address
and its oldest retained address;

• then we search for whether there
is such and if there is, we
increment the value of register
which keeps its frequency;

• if there is no such we initialize a
new register with S and set a
frequency register to one;

• if the frequency of S becomes
greater than that of the previous
register we swap them, thus
doing a “lazy bubble sort”;

LD r1 → r1

MOV r1i → ri

…

MOV r1i+k → r(i+k)

ST arr[i] ← di

ST arr[i+1] ← fi

LD arr[i] → di

LD arr[i+1] → fi

LD r1 → r1

HISTORY(r1)

PREFETCH(r1+d1)

PREFETCH(r1+d2)

PREFETCH(r1+d3)

IsONR(LD) → P

BRANCH cn P

HISTORY(r1)

SUB r1, ri → vi

SEARCH(vi) in di

INCR(fi)

SWAP(di, di-1)

compensating node

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Experimental results

• The method was evaluated on a computer
with the Elbrus microprocessor;

• The microprocessor has EPIC
architecture, 4-way associative L2 of 256
KB, 4 load/store units.

• 181.mcf reduced by 15%

• 254.gap reduced by 4%

• The method is still in the phase of active
development

