
EPIC-8, April 24, 2010

An unsophisticated cooperative

approach to prefetching linked

data structures

Alexander Galazin

Murad Neiman-zade

JSC “MCST”, Moscow

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Motivation

 Pointer-based applications significantly lack

performance due to irregularity of memory

access patterns

 There is no information on how linked data

structures addresses evolve in major

applications

 Existing approaches propose sophisticated

cooperative techniques with great modifications

in CPU

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Background

App Procedure %Tapp Data Misses

181.mcf flow_cost 53.7% 94.2%

update_tree 15.8% 95.1%

197.parser xfree 7.0% 43.6%

table_pointer 3.6% 59.4%

254.gap CollectGarb 9.4% 82.4%

300.twolf new_dbox_a 17.3% 71.0%

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Studying LDS Traversal

• Discover LDS traversal

• Collect , where addr –

address with which LDS traversal operates, i-

loop iteration and k={1..16}

k i k iaddr addr  

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

LDS Traversal Behavior

• 181.mcf

– flow_cost: 2 addresses in LDS and only 1  if k is
fixed

– update_tree: 3  in 97%

• 197.parser

– xfree: 1  in 90%

– table_pointer: 3  in 49%

• 254.gap

– CollectGarb: 2  in 96%

• 300.twolf

– new_dbox_a: 3  in 98%

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Our method

• Architectural support

– New instruction IsOperandsNotReady

• Compiler support

– Discover LDS traversal

– Inject prefetching code

– Create compensating nodes

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Architectural support

• IsOperandsNotReady(TI)

– returns TRUE if any

of the operands of TI

are not ready

– otherwise FALSE

– is always scheduled

together with TI in the

same wide instruction

and requires 1 logical

unit.

C-code

while(a)

{

a=a->next;

}

ASM-code
{

cmpesb,1 %r0, 0, %pred1

pass %ionr1, %pred5

}

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Compiler support. Preparation
• for each LD we create a

global array for keeping 3
most popular  and their
frequencies;

• we keep a history of
addresses for the load for
D iterations;

• in the preloop we load all
elements of the array to
registers

• in the postloop we save
values of 3 top  and
their frequencies in the
array;

LD r1 → r1

ST arr[i] ← di

ST arr[i+1] ← fi

LD arr[i] → di

LD arr[i+1] → fi

LD r1 → r1

HISTORY(r1)

MOV r1i → ri

…

MOV r1i+k → r(i+k)

HISTORY(r1)

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Compiler support. Prefetching

• in the loop head we create

prefetches for (A+) where

A is the address of the LD

on the current iteration;

• after the USE of LD result

we add

IsOperandsNotReady and

branch which transfer

control to a compensating

node;

LD r1 → r1

MOV r1i → ri

…

MOV r1i+k → r(i+k)

HISTORY(r1)

ST arr[i] ← di

ST arr[i+1] ← fi

LD arr[i] → di

LD arr[i+1] → fi

LD r1 → r1; USE(r1)
HISTORY(r1)

PREFETCH(r1+d1)

PREFETCH(r1+d2)

PREFETCH(r1+d3)

IsONR(USE) → P

BRANCH cn P

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Compiler support. Calculating 
• in the compensating node we

calculate S – the difference
between current load address
and its oldest retained address;

• then we search for whether there
is such  and if there is, we
increment the value of register
which keeps its frequency;

• if there is no such  we initialize a
new register with S and set a
frequency register to one;

• if the frequency of S becomes
greater than that of the previous
register we swap them, thus
doing a “lazy bubble sort”;

LD r1 → r1

MOV r1i → ri

…

MOV r1i+k → r(i+k)

ST arr[i] ← di

ST arr[i+1] ← fi

LD arr[i] → di

LD arr[i+1] → fi

LD r1 → r1

HISTORY(r1)

PREFETCH(r1+d1)

PREFETCH(r1+d2)

PREFETCH(r1+d3)

IsONR(LD) → P

BRANCH cn P

HISTORY(r1)

SUB r1, ri → vi

SEARCH(vi) in di

INCR(fi)

SWAP(di, di-1)

compensating node

EPIC-8, April 24, 2010 Alexander Galazin, Murad Neiman-zade

An unsophisticated cooperative approach to prefetching linked data structures

Experimental results

• The method was evaluated on a computer
with the Elbrus microprocessor;

• The microprocessor has EPIC
architecture, 4-way associative L2 of 256
KB, 4 load/store units.

• 181.mcf reduced by 15%

• 254.gap reduced by 4%

• The method is still in the phase of active
development

