
Some Cache Optimization with
Enhanced Pipeline Scheduling

Seok-Young Lee, Jaemok Lee, Soo-Mook Moon

School of Electrical Engineering & Computer Science

Seoul National University, Korea

Outline

 Motivation and background

 Cache optimizations with Enhanced pipeline
scheduling

 Experimental results

 Summary and future work

Cache Misses for Integer Programs

 CPU stalls caused by data cache misses are serious,
even in some integer programs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

164.gzip 175.vpr 176.gcc 181.mcf 197.parser 254.gap 256.bzip 300.twolf 445.gobmk 456.hmmer

CPU Stall portion in the total running time

Conventional Techniques

 Many compiler optimization techniques have been used

• Prefetches for array-accessing loops [Mowry’92]

• Increasing locality in loops [Wolf’91]

• Dynamic runtime optimization [Chilimbi’02]

 But they are not well applicable to integer loops

• Address estimation is not easy (e.g., pointer-chasing loops)

• Complex control flows

A Better Technique

 In integer programs, it is easier to separate “hot cache-
missing loads” from their consumers by cache-miss
latencies

• Simply implemented by increased load latency during code
scheduling

load x = [y]

use x

CPU stall if cache miss

load x = [y]

use x

use a
use b
use c
use d

No CPU stall
if the load and consumer
Is separated.

Cache miss
latency

Our Proposal

 However, naïve code scheduling is not enough

• Code motion of hot loads can be stuck at the loop entry

• Difficult to fill added slack cycles fully and usefully

• Actually, did not show tangible impact [Choi ’02 in EPIC-2]

 Our proposal: moving hot loads across loop iterations

Illustration of the Proposal

load a = @b

use a

…

load a = @bload a = @b

naïve separation:
stuck at the loop header

load a = @b

use a

…

load a = @b

…

[iter 1]

[iter n]

[iter n+1]

proposed separation :
moving hot loads across loop iterations
A code motion for software pipelining

Some Characteristics of Hot Loads

 Located close to loop entry

 Tight data dependence chains to their source operands

• Moving hot load requires moving dependent instructions as well

 Difficult to estimate target address

 Often in a loop with complex control flow

• Require code motion above branches and joins

Hot load example in 181.mcf

while(arcin)

{

tail = arcin->tail;

if(tail->time + arcin->org_cost > latest)

{

arcin = (arc_t *)tail->mark;

continue;

}

…

}

181.mcf source code

Complex and large
code including inner
loop and function call

181.mcf control flow graph

tail->time

Inner loop

Pointer chasing load

In an outer loop with complex control flow

Close to the loop entry

Hot load example in 164.gzip

do {

match = window + cur_match;

if (*(ush*)(match+best_len-1) != scan_end ||

(ush)match != scan_start) continue;

} while ((cur_match = prev[cur_match & WMASK])

> limit && --chain_length != 0);

164.gzip source

Complex and large
code including inner
loop and function call

164.gzip control flow graph

(*(ush*)(match+best_len-1)

prev[cur_match & WMASK]

Cross-Iteration Global Scheduling

 Separating hot loads requires
two types of code motions

• Code motion across loop back-
edges: software pipelining

• Code motion across branches
and joins: global scheduling

 Needs global scheduling
across loop iterations

Enhanced pipeline scheduling

tail->time

tail->timetail->time

tail->time

Enhanced Pipeline Scheduling (EPS)

 A software pipelining technique based on code motions

• Global scheduling can be applied across loop back-edges

• Aggressive code motions for scheduling useful instructions

 If we exploit EPS appropriately, we can (1) separate hot
loads and the consumers effectively and (2) fill the slack
cycles usefully

 Let us first review how EPS works

y = load(x)

EPS Illustration

 EPS repetitively (1) defines a DAG by cutting
edges of a loop and (2) performs DAG scheduling

cc = (y==0)

if(!cc) goto loop

store x @A

Back-edge

preheader

cc = (y==0)
Back-edge

x’ = x+4

if(!cc) goto loop

store x @A

preheader

y = load(x)

x’ = x+4x = x’

iter 1

iter n+1x = x+4

preheader

Back-edge

x’ = x+4

if(!cc) goto loop

store x @A

y = load(x)
x’ = x+4

x = x’

cc = (y==0)

y = load(x’)y = load(x’)

x’’ = x’+4x’’ = x’+4
x’ = x’’

iter n+1
iter n+2

iter 1
iter 1
iter 2

CPU Stall Reduction with EPS

 We simply add a L1-cache-missing latency for “hot”
loads and schedule them by EPS algorithm

• Their consumer instructions will be scheduled far enough
from them, even across loop iterations

 However, this is not that simple

InstInstInst Inst Inst

backedge

Load Use

Issues in Stall Reduction with EPS

 Adding slack cycles means more aggressive code motions
• Some aggressive code motions such as speculative loads or join code

motions have a negative side-effect if performed recklessly

• Must limit aggressive code motion

 On the other hand, hot loads and their source definitions
should be scheduled aggressively
• Must encourage aggressive code motion

Hot Load-related instructions

 We split instructions into two groups, hot-load-
related instructions and non-related instructions.

 Hot-load-related instructions are scheduled more
aggressively than non-related instructions

• Selective heuristics

Scheduling Hot Load-related instructions

def d

def c

...

========

add b = c + d

...

========

ld1 a <= @b

...

========

use a

br

other parts of loop body

...

def d [iter n+1]

def c [iter n+1]

========

add b = c + d[iter n+1]

...

========

use a [iter n]

ld1 a <= @b [iter n+1]

...

========

br

other parts of loop body

Related instruction

Related instruction

Hot load

Stall-Reducing EPS for Open-64

 We implemented EPS into Open-64 (version 3.0),
an open-source compiler for IA-64

• http://www.open64.net/

• EPS is positioned between register allocation and global
instruction scheduling in Open-64

 We then implemented stall reduction for EPS

• Detect “hot” loads via profiling

http://www.open64.net/

Experimental Results

 Experimental Environment

• Intel Itanium2 processor 900Mhz

– 256Kb L1 D-cache (L1 cache miss takes 5 Cycles)

• 10 integer benchmarks from SPEC CPU 2000 and 2006

• Use Performance Monitoring Unit for detecting hot loads

– Collect load instructions whose stall overhead takes over 2% of
running time

– 12 loops in 10 benchmarks are selected

– We do not touch other loops

Experiment Configurations

 Base: Open-64 –O3 with EPS disabled (1.0x)

 EPS without cache optimizations

• Strictly schedule hot loops only

 EPS with cache optimizations

• Strict heuristics

– Limited code motions

• Aggressive heuristics

• Selective heuristics for hot-load-related instructions

Stall Reduction and Performance Result

Stall cycles

Total execution cycles

Strict EPS with
Cache Optimization

Stall is reduced a little than
EPS w/o cache optimization
configuration.

No tangible effects in execution
cycles.

Strict EPS without
Cache Optimization

0.7

0.8

0.9

1

1.1

1.2

1.3

gzip vpr gcc mcf parser gap bzip2 twolf gobmk hmmer

0.7

0.8

0.9

1

1.1

1.2

1.3

gzip vpr gcc mcf parser gap bzip2 twolf gobmk hmmer

0.7

0.8

0.9

1

1.1

1.2

1.3

gzip vpr gcc mcf parser gap bzip2 twolf gobmk hmmer

0.7

0.8

0.9

1

1.1

1.2

1.3

gzip vpr gcc mcf parser gap bzip2 twolf gobmk hmmer

Stall Reduction and Performance Result

Stall cycles

Total execution cycles

Strict EPS with
Cache Optimization

Stall is reduced more.

Execution cycle does not get better

Strict EPS without
Cache Optimization

Aggressive EPS with
Cache Optimization

0.7

0.8

0.9

1

1.1

1.2

1.3

gzip vpr gcc mcf parser gap bzip2 twolf gobmk hmmer

Stall Reduction and Performance Result

Stall cycles

Total execution cycles

Strict EPS with
Cache Optimization

Stall is reduced as much as
aggressive configuration.

Execution cycle is decreased.
Especially gzip and mcf.

Strict EPS without
Cache Optimization

Aggressive EPS with
Cache Optimization

Selective EPS with
Cache Optimization

0.7

0.8

0.9

1

1.1

1.2

1.3

gzip vpr gcc mcf parser gap bzip2 twolf gobmk hmmer

Summary and Future Work

 EPS-based stall reduction achieves promising result

• Adding L1-cache-miss latency for hot loads to separate
them from their consumers

• Aggressively schedule hot-load-related instructions only

 Future Work

• More balanced heuristics between parallelism & stall
reduction

– Canceling code motions which has no advantage for either
parallelism or stall reduction after EPS

• Handling L2-cache-miss for some hottest loads

Thanks

 Questions?

