
Improving Selective Scheduler
Approach With Predication and

Explicit Data Dependence
Support

Dmitry Melnik, Alexander Monakov, Andrey Belevantsev, Tigran
Topchyan, and Mamikon Vardanyan

{dm, amonakov, abel, tigran, mamikon}@ispras.ru

April 24th, 2010

Selective scheduling in GCC

• Provides a scheduling framework
– Supports scheduling along all paths in a DAG

– Supports a number of instruction transformations
• local – speculation/substitution, they happen when

one instruction is being moved through another

• global – instruction cloning/register renaming,
these require the knowledge of code motion paths

• Provides software pipelining implementation
– supports control-flow intensive and non-countable loops

– can pipeline loop nests starting from the innermost loop to
the outermost

• Included in GCC since 4.4 (on ia64 runs with –O3)

• ~4% speedup for SPEC FP 2000

Example of the linear code
scheduling

x = y

if cc0

y = w * w y = z

u = y + 1

z = x + 1

Empty parallel group

avset = { y+1, x+1 }

avset = { z, z+1, x+1 }

)(_))((_)(
)(

iopavxavsetsetmoveupiavset
nSuccx

avset = { w*w, y+1, x+1 }

avset = { y, if cc0, w*w,

z, z+1, y+1 }

• 1st step: computation

fence

Example of the linear code
scheduling

if cc0

y = w * w y = z

u = y + 1

z = x + 1

Parallel group

avset = { y+1, x+1 }

avset = { z, z+1, x+1 }
avset = { w*w, y+1, x+1 }

avset = { y, if cc0, w*w,

z, z+1, y+1 }

• 2nd step: choosing a register

fence

x = y

avset (fence) = { if cc0, w*w,

z, z+1, x+1 }

CFG traversed from the top and if current form of expression
is in the successor’s av_set, we check the register availability
on the code motion path. Register z is unavailable, so we
choose z’.

Example of the linear code
scheduling

if cc0

y = w * w
y = z

z’ = x+1

u = y + 1

z = z’

Parallel group

avset = { y+1, x+1 }

avset = { z, z+1, x+1 }
avset = { w*w, y+1, x+1 }

avset = { y, if cc0, w*w,

z, z+1, y+1 }

• 3rd step: code motion

x+1 is being moved to the

current fence

x = y

avset (fence) = { if cc0, w*w,

z, z+1, x+1 }

CFG traversed the same way as on previous step. This time
we create bookkeeping on the join points, which later might
be removed, if the operation is also available on that path.

Example of the linear code
scheduling

if cc0

y = w * w
y = z

z’ = x+1

u = y + 1

z = z’

Parallel group

avset = { y+1, x+1 }

avset = { z, z+1, x+1 }
avset = { w*w, y+1, x+1 }

avset = { y, if cc0, w*w,

z, z+1, y+1 }

• 3rd step: code motion

x = y

z’ = y + 1

avset (fence) = { if cc0, w*w,

z, z+1, x+1 }

CFG traversed the same way as on previous step. This time
we create bookkeeping on the join points, which later might
be removed, if the operation is also available on that path

x+1 is being moved to the

current fence

Features highlight

• Software pipelining support

– Pipeline innermost loops via “dynamic” back edge

• A fence serves as a barrier for code motion

– Pipeline loop nests starting from innermost loops

– Treat inner loops like barriers

load

store

mul

load

store

mul

mul

store

load

load'

fences

High-level view of the scheduler

• Initialize global data – alias analysis, df, ...

• Form scheduling regions
– Find acyclic regions of control flow

– For pipelining: find all loop nests,

form loop regions starting from

innermost loops,

form acyclic regions from

the rest of blocks

– Pipelining will be enabled for any

loop region which is not too large

• Schedule every region

• Finalize the data

 outer #2

inner #0

inner #1

Scheduling the region
• Gather available instructions/RHSes

to each available fence

– Local transformations are done on the way

– Intermediate av sets are saved at each basic block

• Choose the best instruction from available ones

– By calling DFA lookahead routines and target hooks

– Check that we do not cross any live ranges with

a given code motion

– Choose the destination register if renaming

• Fixup the program for the selected code motion

– Traverse code motion paths and insert bookkeeping

at join points of control flow

– Update saved av sets and liveness info

• When no insns are ready, advance the fences

Predication support

• Added to selective scheduling as yet another
instruction transformation

• Implemented changes:
• Computation stage

• Create predicated instructions

• Dependence analysis modification

• Code motion stage
• Search for predicated instructions

• Undo predication using transformation history

• Bookkeeping code creation

• Interaction with other transformations
• Allow local transformations to be combined with predication

• Pipelining enhancements

Computation stage changes

• Predicated instructions are added to AV sets
on join points in control flow
• Anything predicable that comes from a successor guarded

by a predicate jump is processed

• The suitable instruction is predicated and added to the
resulting set (even when it’s available for both successors)

• Dependence analysis is relaxed
• Moving predicated instructions through conditional jumps

with the same/inverted predicate is allowed

• A cache for storing predication results is implemented

Code motion stage changes

• Search for predicated instruction
• Do not travel past the conditional jump with the same

predicate to the target that does not satisfy this predicate

• Undo predication as other local transformations when
traversing

• Support for predication in transformation history is
implemented

• Bookkeeping code generation
• Do not delete the original instruction found, but rather

predicate it with the inverted predicate

• Need to ensure that the predicate register is not
clobbered along code motion paths

• Not implemented now – just forbid moving a predicated
instruction along the jump with the other predicate reg

Example with bookkeeping code

Interaction with other transformations

• Arbitrary local transformations are permitted on
predicated instructions
• Substitution when moving through a copy (either

predicated or not)

• Predicating a speculated memory load is fine

• Renaming a predicated instruction is supported

• LHS/RHS of a predicated instruction are set to be the ones
of the original instruction

• Predication improves pipelining quality
• Avoid speculation when pipelining a load

• Avoid renaming when a target register lives on a loop exit

• Avoid unnecessary code execution (with the false
predicate on the last loop iteration)

Experimental results

• SPEC CPU 2000 with –O3 –ffast-math
• Also tried with doloop pass disabled so that br.cloop is

not generated and predication with pipelining is not
hampered

• Moderate improvements on some tests
• twolf (1.3%), swim (2.6%), galgel (1.5%), and
sixtrack (2.5%) when doloop pass is enabled

• eon (2.5%), twolf (1%), swim (2.6%), applu (1.5%),
mesa (1.6%), facerec (1.8%), and sixtrack (1.2%)
when doloop is disabled

• No degradations with enabled doloop

• Improvement is likely due to more pipelining without
unnecessary speculation

Support for Explicit Data Dependence

Graph (DDG)

• Original approach doesn’t use DDG, but rather
supports the elementary operation of moving an
instruction up through another one

• Why construct explicit DDG?
• Improve heuristics used to choose the best instruction for

scheduling at each step

• Eliminate excessive renaming copies that can be
generated by the selective scheduler (inline simple copy
propagation)

• Improve compile time

Advantages of using DDG

1. Improve scheduling heuristics
• Estimating profitability of aggressive code transformations

• Walk def-use chains, evaluate critical path length in DDG,
and deny obviously unprofitable transformations

load

use

…

load

check.s

use

…

load.s

CPU

Cycle

Original

schedule

With

renaming

0: f3 = [r4]

2: use f2

f2 = [r4]

use f2

6: f2 = f3

8: use f2

10: use f2

Control speculation: Renaming:

Advantages of using DDG

1. Improve scheduling heuristics
• Implement dynamic instruction priorities for scheduling

• Use advanced heuristics like G∗ or speculative yield,
designed for interblock scheduling with speculative
transformations and that considers edges probability

• Dynamically update priorities while scheduling

Advantages of using DDG

2. Eliminate excessive renaming copies
• Excessive renaming copies by design can be generated

by selective scheduler

• The negative effects are increased code size and register
pressure

• Currently restricted from renaming simple operations in
the 2nd scheduler pass (after RA), and limits on register
pressure in the 1st scheduler pass (before RA)

• Better solution: augment scheduler with a simple copy
propagation pass

Advantages of using DDG

3. Improve compile time
• The most costly part of the algorithm is the dependence

analysis

• Originally, during each computation of av_set local data
dependence analysis is performed between the current
instruction and each instruction in precomputed av_set below it

• Currently, the problem is addressed by using dependency and
transformation caches

• Still, selective scheduler slows down compilation with GCC by
25%

• Using explicit DDG, complexity of data dependence analysis
can be further reduced

Data Dependence Graph Implementation

• Each program instruction or expression in av_set is represented
by a node in DDG

• Data dependences between them are represented by edges
and attributed with dependence type, location and register

• DDG is updated incrementally with every selective scheduling
transformation: instruction move, unification of expressions,
generation of bookkeeping, forward substitution, register
renaming, data and control speculation, predication

Data Dependence Graph Transformations

• Example: forward substitution

a: r1 = r2

…

x: r3 = r1 * c + d

x’: r3 = r2 * c + d

…

a: r1 = r2

True dependency between a and x is eliminated (along with all dependencies
to x by r1), and all dependencies to right-hand side of a are duplicated to x’

a:r1 = r2

x:r3 = r1*c+d

Def r2

a:r1 = r2

x’:r3 = r2*c+d

Def r2

(true)

Data Dependence Graph Transformations

• Register renaming

a: r1 = r2 + 3

…

x: r2 = ld[r3]

x’: r4 = ld[r3]

a : r1 = r2 + 3

…

x’’: r2 = r4

a:r1 = r2+3

x:r2 = ld[r3]

Def r4

(anti)

a:r1 = r2 +3

Def r4

x’:r4 = ld[r3]

x’’:r2 = r4

(true)

Anti-dependence between a and x by r2 is eliminated, and instruction x’

receives all other dependencies of x.

Instruction x’’ gets all dependencies from x by its destination register.
Also new dependencies by r4 are added to both x’ and x’’.

Data Dependence Graph Transformations

There are two transformation classes:
• Local

• These just remove or alter existing dependencies

• Example: forward substitution

• Handled at the time of availability sets computation

• Emitting

• Transformations that involve moving instructions across basic blocks or
emitting new instructions

• Example: renaming registers, creating bookkeeping

• Writing to a newly allocated register (or exposing instruction on different
path) may result in creating new anti-dependencies

• To build new dependencies, a reverse lookup tables are used. They’re
indexed by a register number (or a memory location) containing
instructions in the basic block that read (write) that location

• Handled at the time of scheduling instruction

Data Dependence Graph Transformations

Other selective scheduling transformations
• Include instruction move, unification of expressions,

generation of bookkeeping, forward substitution, register
renaming, data and control speculation, predication

• Handled similarly to substitution or register renaming

• Usually consist of two parts: local and emitting. The
former removes or alters dependencies, the second
generates new dependencies with the emitted instructions

Conclusions

We have developed two improvements to selective
scheduling algorithm:

• Predication support
• Implemented in GCC

• Average improvement on SPEC2000 tests is about
0.5% (up to 2.5% on certain tests) without significant
degradations (with doloop pass)

• Explicit data dependence graph support
• Currently being implemented in GCC

• As soon as it’s tested, will be used to implement new
scheduling heuristics

