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Selective scheduling in GCC

• Provides a scheduling framework
– Supports scheduling along all paths in a DAG

– Supports a number of instruction transformations
• local – speculation/substitution, they happen when 

one instruction is being moved through another

• global – instruction cloning/register renaming,
these require the knowledge of code motion paths

• Provides software pipelining implementation
– supports control-flow intensive and non-countable loops

– can pipeline loop nests starting from the innermost loop to 
the outermost

• Included in GCC since 4.4 (on ia64 runs with –O3)

• ~4% speedup for SPEC FP 2000



Example of the linear code 
scheduling

x = y

if cc0

y = w * w y = z

u = y + 1

z = x + 1

Empty parallel group

avset = { y+1, x+1 }

avset = { z, z+1, x+1 }
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avset = { w*w, y+1, x+1 }

avset = { y, if cc0, w*w, 

z, z+1, y+1 }

• 1st step: computation

fence



Example of the linear code 
scheduling

if cc0

y = w * w y = z

u = y + 1

z = x + 1

Parallel group

avset = { y+1, x+1 }

avset = { z, z+1, x+1 }
avset = { w*w, y+1, x+1 }

avset = { y, if cc0, w*w, 

z, z+1, y+1 }

• 2nd step: choosing a register

fence

x = y

avset (fence) = { if cc0, w*w, 

z, z+1, x+1 }

CFG traversed from the top and if current form of expression 
is in the successor’s av_set, we check the register availability 
on the code motion path. Register z is unavailable, so we 
choose z’.



Example of the linear code 
scheduling

if cc0

y = w * w
y = z

z’ = x+1

u = y + 1

z = z’

Parallel group

avset = { y+1, x+1 }

avset = { z, z+1, x+1 }
avset = { w*w, y+1, x+1 }

avset = { y, if cc0, w*w, 

z, z+1, y+1 }

• 3rd step: code motion

x+1 is being moved to the 

current fence

x = y

avset (fence) = { if cc0, w*w, 

z, z+1, x+1 }

CFG traversed the same way as on previous step. This time 
we create bookkeeping on the join points, which later might 
be removed, if the operation is also available on that path.



Example of the linear code 
scheduling

if cc0

y = w * w
y = z

z’ = x+1

u = y + 1

z = z’

Parallel group

avset = { y+1, x+1 }

avset = { z, z+1, x+1 }
avset = { w*w, y+1, x+1 }

avset = { y, if cc0, w*w, 

z, z+1, y+1 }

• 3rd step: code motion

x = y

z’ = y + 1

avset (fence) = { if cc0, w*w, 

z, z+1, x+1 }

CFG traversed the same way as on previous step. This time 
we create bookkeeping on the join points, which later might 
be removed, if the operation is also available on that path

x+1 is being moved to the 

current fence



Features highlight

• Software pipelining support

– Pipeline innermost loops via “dynamic” back edge

• A fence serves as a barrier for code motion

– Pipeline loop nests starting from innermost loops

– Treat inner loops like barriers
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High-level view of the scheduler

• Initialize global data – alias analysis, df, ...

• Form scheduling regions 
– Find acyclic regions of control flow

– For pipelining: find all loop nests,

form loop regions starting from 

innermost loops,

form acyclic regions from 

the rest of blocks

– Pipelining will be enabled for any 

loop region which is not too large

• Schedule every region 

• Finalize the data

            outer #2 

inner #0

inner #1



Scheduling the region
• Gather available instructions/RHSes

to each available fence

– Local transformations are done on the way

– Intermediate av sets are saved at each basic block

• Choose the best instruction from available ones

– By calling DFA lookahead routines and target hooks

– Check that we do not cross any live ranges with 

a given code motion

– Choose the destination register if renaming

• Fixup the program for the selected code motion

– Traverse code motion paths and insert bookkeeping

at join points of control flow

– Update saved av sets and liveness info

• When no insns are ready, advance the fences



Predication support

• Added to selective scheduling as yet another 
instruction transformation

• Implemented changes:
• Computation stage

• Create predicated instructions

• Dependence analysis modification

• Code motion stage
• Search for predicated instructions

• Undo predication using transformation history

• Bookkeeping code creation

• Interaction with other transformations
• Allow local transformations to be combined with predication

• Pipelining enhancements



Computation stage changes

• Predicated instructions are added to AV sets 
on join points in control flow
• Anything predicable that comes from a successor guarded 

by a predicate jump is processed

• The suitable instruction is predicated and added to the 
resulting set (even when it’s available for both successors)

• Dependence analysis is relaxed 
• Moving predicated instructions through conditional jumps 

with the same/inverted predicate is allowed

• A cache for storing predication results is implemented



Code motion stage changes

• Search for predicated instruction
• Do not travel past the conditional jump with the same 

predicate to the target that does not satisfy this predicate

• Undo predication as other local transformations when 
traversing 

• Support for predication in transformation history is 
implemented

• Bookkeeping code generation
• Do not delete the original instruction found, but rather 

predicate it with the inverted predicate

• Need to ensure that the predicate register is not 
clobbered along code motion paths

• Not implemented now – just forbid moving a predicated 
instruction along the jump with the other predicate reg



Example with bookkeeping code



Interaction with other transformations

• Arbitrary local transformations are permitted on 
predicated instructions
• Substitution when moving through a copy (either 

predicated or not)

• Predicating a speculated memory load is fine

• Renaming a predicated instruction is supported

• LHS/RHS of a predicated instruction are set to be the ones 
of the original instruction

• Predication improves pipelining quality
• Avoid speculation when pipelining a load

• Avoid renaming when a target register lives on a loop exit

• Avoid unnecessary code execution (with the false 
predicate on the last loop iteration)



Experimental results

• SPEC CPU 2000 with –O3 –ffast-math
• Also tried with doloop pass disabled so that br.cloop is 

not generated and predication with pipelining is not 
hampered

• Moderate improvements on some tests
• twolf (1.3%), swim (2.6%), galgel (1.5%), and 
sixtrack (2.5%) when doloop pass is enabled

• eon (2.5%), twolf (1%), swim (2.6%), applu (1.5%), 
mesa (1.6%), facerec (1.8%), and sixtrack (1.2%) 
when doloop is disabled

• No degradations with enabled doloop

• Improvement is likely due to more pipelining without 
unnecessary speculation



Support for Explicit Data Dependence 

Graph (DDG)

• Original approach doesn’t use DDG, but rather 
supports the elementary operation of moving an 
instruction up through another one

• Why construct explicit DDG?
• Improve heuristics used to choose the best instruction for 

scheduling at each step

• Eliminate excessive renaming copies that can be 
generated by the selective scheduler (inline simple copy 
propagation)

• Improve compile time



Advantages of using DDG

1. Improve scheduling heuristics
• Estimating profitability of aggressive code transformations

• Walk def-use chains, evaluate critical path length in DDG, 
and deny obviously unprofitable transformations
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0: f3 = [r4]

2: use f2
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10: use f2

Control speculation: Renaming:



Advantages of using DDG

1. Improve scheduling heuristics
• Implement dynamic instruction priorities for scheduling

• Use advanced heuristics like G∗ or speculative yield, 
designed for interblock scheduling with speculative 
transformations and that considers edges probability 

• Dynamically update priorities while scheduling



Advantages of using DDG

2. Eliminate excessive renaming copies
• Excessive renaming copies by design can be generated 

by selective scheduler

• The negative effects are increased code size and register 
pressure

• Currently restricted from renaming simple operations in 
the 2nd scheduler  pass (after RA), and limits on register 
pressure in the 1st scheduler pass (before RA)

• Better solution: augment scheduler with a simple copy 
propagation pass



Advantages of using DDG

3. Improve compile time
• The most costly part of the algorithm is the dependence 

analysis

• Originally, during each computation of av_set local data 
dependence analysis is performed between the current 
instruction and each instruction in precomputed av_set below it

• Currently, the problem is addressed by using dependency and 
transformation caches

• Still, selective scheduler slows down compilation with GCC by 
25%

• Using explicit DDG, complexity of data dependence analysis 
can be further reduced



Data Dependence Graph Implementation

• Each program instruction or expression in av_set is represented 
by a node in DDG

• Data dependences between them are represented by edges 
and attributed with dependence type, location and register

• DDG is updated incrementally with every selective scheduling 
transformation: instruction move, unification of expressions, 
generation of bookkeeping, forward substitution, register 
renaming, data and control speculation, predication



Data Dependence Graph Transformations

• Example: forward substitution

a: r1 = r2

…

x: r3 = r1 * c + d

x’: r3 = r2 * c + d

…

a:  r1 = r2

True dependency between a and x is eliminated (along with all dependencies
to x by r1), and all dependencies to right-hand side of a are duplicated to x’

a:r1 = r2

x:r3 = r1*c+d

Def r2

a:r1 = r2

x’:r3 = r2*c+d

Def r2

(true)



Data Dependence Graph Transformations

• Register renaming

a: r1 = r2 + 3

…

x: r2 = ld[r3]

x’: r4 = ld[r3]

a : r1 = r2 + 3

…

x’’:  r2 = r4

a:r1 = r2+3

x:r2 = ld[r3]

Def r4

(anti)

a:r1 = r2 +3

Def r4

x’:r4 = ld[r3]

x’’:r2 = r4

(true)

Anti-dependence between a and x by r2 is eliminated, and instruction x’

receives all other dependencies of x.

Instruction x’’  gets all dependencies from x by its destination register.
Also new dependencies by r4 are added to both x’ and x’’.



Data Dependence Graph Transformations

There are two transformation classes:
• Local

• These just remove or alter existing dependencies

• Example: forward substitution

• Handled at the time of availability sets computation

• Emitting

• Transformations that involve moving instructions across basic blocks or 
emitting new instructions 

• Example: renaming registers, creating bookkeeping

• Writing to a newly allocated register (or exposing instruction on different 
path) may result in creating new anti-dependencies

• To build new dependencies, a reverse lookup tables are used. They’re 
indexed by a register number (or a memory location) containing 
instructions in the basic block that read (write) that location

• Handled at the time of scheduling instruction



Data Dependence Graph Transformations

Other selective scheduling transformations
• Include instruction move, unification of expressions, 

generation of bookkeeping, forward substitution, register 
renaming, data and control speculation, predication

• Handled similarly to substitution or register renaming

• Usually consist of two parts: local and emitting. The 
former removes or alters dependencies, the second 
generates new dependencies with the emitted instructions



Conclusions

We have developed two improvements to selective 
scheduling algorithm:

• Predication support
• Implemented in GCC

• Average improvement on SPEC2000 tests is about 
0.5% (up to 2.5% on certain tests) without significant 
degradations (with doloop pass)

• Explicit data dependence graph support
• Currently being implemented in GCC

• As soon as it’s tested, will be used to implement new 
scheduling heuristics


