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Problem

• Multicore is ubiquitous
• Commodity chips

• On desktop
• In the datacenter

• Promises parallel processing
• Does not always deliver

• Memory subsystem is shared
• On chip last level cache
• Bus, memory, disk
• Contention occurs 
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Contention

• Contention causes cross-core interference
• Just 2 co-running SPEC2006 applications
• 35% Slowdown
• State of the art Quad-core (Core i7)
• Simply not tolerable in many application domain (QoS) e.g. datacenter
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Contention in the datacenter

• Cannot withstand performance 
interference

• Latency sensitive applications
• Search, Email
• User facing services

• Batch/Throughput applications
• Compression, Video Encode
• Behind-the-scenes work

• Current proposed solution
• Disallow co-location

• Wasteful, sacrifices utilization
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Goal

• Provide a better solution for performance isolation for the 
QoS of applications

• On commodity multicore processors

• Improves multicore processor utilization
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Approach: Contention Aware 
Execution

• Address contention using a runtime layer

• A contention aware execution environment

1. Detect contention 

2. Respond to contention

• CAER: Contention Aware Execution Runtime

• Key Outcome: It Can be done on current hardware

• Detect and respond without hardware support
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CAER: Execution Layer

• Cross-core application cooperation

• A runtime under each application of interest
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CAER: Execution Layer

• Communication Table

• Record monitoring information (via periodic probing)

• Infer contention using performance information - react accordingly
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CAER: Execution Layer

• Uses hardware performance 
monitors (HPM)

• CAER monitors and exploits 
cache behavior

• Last level cache misses 
indicates memory subsystem 
usage and performance
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Outline

• Problem / Motivation

• CAER overview

• Achieving detection and response

• Burst shutter approach

• Rule based approach

• Evaluation

• Conclusion
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Achieving Contention Aware 
Execution

• Execution layer duties

• Detect Contention

• Enact Contention Response
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Detecting Contention with 
Burst Shutter

• Observation and 
insight

• Contending case vs 
not contending

• Observable with 
HPM (LLC misses)

• Leads to designing 
burst shutter

 w/ Contender
 Alone
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Detecting Contention with 
Burst Shutter

• Burst shutter heuristic

• 2 applications are co-located

• Stagger execution of ‘batch’ 
job

• Observe impact on ‘latency 
sensitive’ job

• Threshold based heuristic

• Complete algorithm and 
discussion in paper

Core Core Core Core

L1 L1 L1 L1

L2

Mem Controller

Lat. Batch
CAER

Thursday, May 13, 2010



Contention Response with 
Burst Shutter

• Reduce pressure on 
memory subsystem

• Pausing ‘batch’ 
application for fixed 
period

• Retest for contention
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Detecting Contention with 
Rule Based Approach

• Insight and observation

• Use indication working set size

• LLC Cache misses as an indicator

• Implies larger working set
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Detecting Contention with 
Rule Based Approach

• Rule based heuristic

• Monitor LLC miss rate of 
applications

• If both batch  are missing, 
assume contention in LLC

• Also threshold based

• Full Algorithm and 
description in paper
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Contention Response with 
Rule Based Approach

• Soft locking

• When contention detected, lock cache

• Continue monitoring

• Release lock, when LLC demand subsides
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Outline

• Problem / Motivation

• CAER overview

• Achieving detection and response

• Burst shutter approach

• Rule based approach

• Evaluation

• Conclusion
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Evaluation

• Implemented CAER prototype 
for current Multicore

• Supports a batch and latency 
sensitive applicaton

• All experiments run on Core i7 
(Nehalem)

• Spec 2006 suite (C/C++)
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Evaluation

• Goals: Provide contention detection and response 
approach to reduce cross-core interference and 
improve utilization

1. Impact of Co-location with CAER

2. Utilization gained when using CAER
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Evaluation

• Impact of Allowing Co-location with CAER

• Lower is Better

 Co−location /w CAER (Rule Based)
 Co−location /w CAER (Shutter)
 Co−location
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  1.25x
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  1.35x

  1.4x
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Evaluation

• Utilization gained from CAER Co-location

• Higher is better

 CAER (Rule Based)
 CAER (Shutter)
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Take-away Insights

• HPM allow very lightweight online monitoring

• No need for instrumentation

• No need to ‘control’ execution

• Online adaptation sometime necessitates an empirical 
approach

• Try something, measure the effects, react accordingly
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Summary and Conclusion
• Cross core interference poses significant challenge

• QoS, latency sensitive applications in data-center

• We Can detect and respond current commodity CMPs

• We show how, using CAER

• Much more details in the paper

• Brings performance interference degradation from 17% 
to just 4% while gain ~58% utilization of neighboring 
core
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Questions?
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Accuracy

• Baseline: (used to illustrate contention detection accuracy)

• Random heuristic (Correctly identifies contention 50% of the time)

• Sensitive applications vs insensitive applications
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