
CONTENTION AWARE
EXECUTION

Online contention detection and response

Jason Mars1, Neil Vacharajani2, Robert Hundt2, Mary Lou Soffa1

1University of Virginia
2Google

Thursday, May 13, 2010

Problem

• Multicore is ubiquitous
• Commodity chips

• On desktop
• In the datacenter

• Promises parallel processing
• Does not always deliver

• Memory subsystem is shared
• On chip last level cache
• Bus, memory, disk
• Contention occurs

Core Core Core Core

L1 L1 L1 L1

L2

Mem Controller

App 1 App 2

Thursday, May 13, 2010

Contention

• Contention causes cross-core interference
• Just 2 co-running SPEC2006 applications
• 35% Slowdown
• State of the art Quad-core (Core i7)
• Simply not tolerable in many application domain (QoS) e.g. datacenter

48
3.

xa
la

nc
bm

k
43

3.
m

ilc
43

5.
gr

om
ac

s
44

4.
na

m
d

44
7.

de
al

II

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
47

0.
lb

m
48

2.
sp

hi
nx

3
m

ea
n

45
0.

so
pl

ex

Sl
ow

do
w

n
D

ue
 to

 In
te

rfe
re

nc
e

 1x

 1.05x

 1.1x

 1.15x

 1.2x

 1.25x

 1.3x

 1.35x

 1.4x

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

Thursday, May 13, 2010

Contention in the datacenter

• Cannot withstand performance
interference

• Latency sensitive applications
• Search, Email
• User facing services

• Batch/Throughput applications
• Compression, Video Encode
• Behind-the-scenes work

• Current proposed solution
• Disallow co-location

• Wasteful, sacrifices utilization

Core Core Core Core

L1 L1 L1 L1

L2

Mem Controller

Search Encode

Thursday, May 13, 2010

Goal

• Provide a better solution for performance isolation for the
QoS of applications

• On commodity multicore processors

• Improves multicore processor utilization

Thursday, May 13, 2010

Approach: Contention Aware
Execution

• Address contention using a runtime layer

• A contention aware execution environment

1. Detect contention

2. Respond to contention

• CAER: Contention Aware Execution Runtime

• Key Outcome: It Can be done on current hardware

• Detect and respond without hardware support

Thursday, May 13, 2010

CAER: Execution Layer

• Cross-core application cooperation

• A runtime under each application of interest

Core Core Core Core

Shared Memory

CAER M CAER M CAER CAER

Latency
Sensitive App

Latency
Sensitive App

Batch App Batch App

Core Core

SharedMemory

CAER M CAER

Latency
Sensitive App

Batch App

CAER Architecture CAER Prototype

Execution layer

Thursday, May 13, 2010

CAER: Execution Layer

• Communication Table

• Record monitoring information (via periodic probing)

• Infer contention using performance information - react accordingly

Core Core Core Core

Shared Memory

CAER M CAER M CAER CAER

Latency
Sensitive App

Latency
Sensitive App

Batch App Batch App

Core Core

SharedMemory

CAER M CAER

Latency
Sensitive App

Batch App

CAER Architecture CAER Prototype

Communication table

Thursday, May 13, 2010

CAER: Execution Layer

• Uses hardware performance
monitors (HPM)

• CAER monitors and exploits
cache behavior

• Last level cache misses
indicates memory subsystem
usage and performance

0

150000000

300000000

450000000

600000000

In
st

ru
c
ti
o

n
s

R
e
ti
re

d

xalan

0

100000000

200000000

300000000

400000000

In
st

ru
c
ti
o

n
s

R
e
ti
re

d

mcf

0

500000

1000000

1500000

2000000

L
a
st

 L
e
ve

l C
a
c
h

e
 M

is
se

s

xalan

0

1000000

2000000

3000000

4000000

L
a
st

 L
e
ve

l C
a
c
h

e
 M

is
se

s
mcf

Thursday, May 13, 2010

Outline

• Problem / Motivation

• CAER overview

• Achieving detection and response

• Burst shutter approach

• Rule based approach

• Evaluation

• Conclusion

Thursday, May 13, 2010

Achieving Contention Aware
Execution

• Execution layer duties

• Detect Contention

• Enact Contention Response

Detect
Contention

+
Response

-
Response

Detect Respond

Yes

No

Thursday, May 13, 2010

Detecting Contention with
Burst Shutter

• Observation and
insight

• Contending case vs
not contending

• Observable with
HPM (LLC misses)

• Leads to designing
burst shutter

 w/ Contender
 Alone

43
3.

m
ilc

43
5.

gr
om

ac
s

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

47
0.

lb
m

48
2.

sp
hi

nx
3

m
ea

n

La
st

Le
ve

l C
ac

he
 M

iss
es

45
4.

ca
lc

ul
ix

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k

Thursday, May 13, 2010

Detecting Contention with
Burst Shutter

• Burst shutter heuristic

• 2 applications are co-located

• Stagger execution of ‘batch’
job

• Observe impact on ‘latency
sensitive’ job

• Threshold based heuristic

• Complete algorithm and
discussion in paper

Core Core Core Core

L1 L1 L1 L1

L2

Mem Controller

Lat. Batch
CAER

Thursday, May 13, 2010

Contention Response with
Burst Shutter

• Reduce pressure on
memory subsystem

• Pausing ‘batch’
application for fixed
period

• Retest for contention

Detect
Contention

+
Response

-
Response

Detect Respond

Yes

No

Thursday, May 13, 2010

Detecting Contention with
Rule Based Approach

• Insight and observation

• Use indication working set size

• LLC Cache misses as an indicator

• Implies larger working set

Thursday, May 13, 2010

Detecting Contention with
Rule Based Approach

• Rule based heuristic

• Monitor LLC miss rate of
applications

• If both batch are missing,
assume contention in LLC

• Also threshold based

• Full Algorithm and
description in paper

Core Core Core Core

L1 L1 L1 L1

L2

Mem Controller

Lat. Batch

Cache misses

Thursday, May 13, 2010

Contention Response with
Rule Based Approach

• Soft locking

• When contention detected, lock cache

• Continue monitoring

• Release lock, when LLC demand subsides

Thursday, May 13, 2010

Outline

• Problem / Motivation

• CAER overview

• Achieving detection and response

• Burst shutter approach

• Rule based approach

• Evaluation

• Conclusion

Thursday, May 13, 2010

Evaluation

• Implemented CAER prototype
for current Multicore

• Supports a batch and latency
sensitive applicaton

• All experiments run on Core i7
(Nehalem)

• Spec 2006 suite (C/C++)

Core Core Core Core

Shared Memory

CAER M CAER M CAER CAER

Latency
Sensitive App

Latency
Sensitive App

Batch App Batch App

Core Core

SharedMemory

CAER M CAER

Latency
Sensitive App

Batch App

CAER Architecture CAER Prototype

Thursday, May 13, 2010

Evaluation

• Goals: Provide contention detection and response
approach to reduce cross-core interference and
improve utilization

1. Impact of Co-location with CAER

2. Utilization gained when using CAER

Thursday, May 13, 2010

Evaluation

• Impact of Allowing Co-location with CAER

• Lower is Better

 Co−location /w CAER (Rule Based)
 Co−location /w CAER (Shutter)
 Co−location

 1x

 1.2x

 1.25x

 1.3x

 1.35x

 1.4x

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k

43
3.

m
ilc

43
5.

gr
om

ac
s

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

45
4.

ca
lc

ul
ix

47
0.

lb
m

48
2.

sp
hi

nx
3

m
ea

n

Ex
ec

ut
io

n
Ti

m
e

Pe
na

lty
 D

ue
 to

 C
ro

ss
−C

or
e

In
te

rfe
re

nc
e

 1.1x

 1.05x

 1.15x

Thursday, May 13, 2010

Evaluation

• Utilization gained from CAER Co-location

• Higher is better

 CAER (Rule Based)
 CAER (Shutter)

44
7.

de
al

II
45

0.
so

pl
ex

45
3.

po
vr

ay

47
0.

lb
m

48
2.

sp
hi

nx
3

m
ea

n

U
til

iz
at

io
n

G
ai

ne
d

45
4.

ca
lc

ul
ix

 0%

 20%

 40%

 60%

 80%

 100%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

3.
xa

la
nc

bm
k

43
3.

m
ilc

43
5.

gr
om

ac
s

44
4.

na
m

d

Thursday, May 13, 2010

Take-away Insights

• HPM allow very lightweight online monitoring

• No need for instrumentation

• No need to ‘control’ execution

• Online adaptation sometime necessitates an empirical
approach

• Try something, measure the effects, react accordingly

Thursday, May 13, 2010

Summary and Conclusion
• Cross core interference poses significant challenge

• QoS, latency sensitive applications in data-center

• We Can detect and respond current commodity CMPs

• We show how, using CAER

• Much more details in the paper

• Brings performance interference degradation from 17%
to just 4% while gain ~58% utilization of neighboring
core

Thursday, May 13, 2010

Questions?

Thursday, May 13, 2010

Accuracy

• Baseline: (used to illustrate contention detection accuracy)

• Random heuristic (Correctly identifies contention 50% of the time)

• Sensitive applications vs insensitive applications

 CAER (Shutter)
 CAER (Rule Based)

 −50%

 50%

 100%

45
6.

hm
m

er

46
4.

h2
64

re
f

43
5.

gr
om

ac
s

44
4.

na
m

d

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

m
ea

n

U
til

iz
at

io
n

G
ai

ne
d

/ C
A

ER
 (R

an
do

m
)

 −100%

 0%

 CAER (Shutter)
 CAER (Rule Based)

 −50%

 50%

 100%

42
9.

m
cf

46
2.

lib
qu

an
tu

m

47
1.

om
ne

tp
p

45
0.

so
pl

ex

47
0.

lb
m

48
2.

sp
hi

nx
3

m
ea

n

U
til

iz
at

io
n

G
ai

ne
d

/ C
A

ER
 (R

an
do

m
)

 −100%

 0%

InsensitiveSensitive

Thursday, May 13, 2010

