
An Efficient Software
Transactional Memory Using
Commit-Time Invalidation

CGO
Justin E. Gottschlich, Manish Vachharajani,

and Jeremy G. Siek

University of Colorado-Boulder
Gottschlich, Vachharajani, and Siek 1

• Problem
o TM is not fast enough! (Cascaval et al., 2008)

• Reason
oConflict Detection and Opacity

oMost TMs use Validation

• Our solution:
o Full Invalidation

o InvalSTM

Gottschlich, Vachharajani, and Siek 2

Motivation

• Conflict Detection
o Determine if transaction can commit

• (Papadimitrou, “Theory of Database
Concurrency Control,” 1986)

• Opacity
o Keep in-flight transactions consistent

• (Guerraoui & Kapalka, PPoPP’08)

Gottschlich, Vachharajani, and Siek 3

TM Performance
Bottleneck

Conflict Detection

Gottschlich, Vachharajani, and Siek 4

Conflict: WT1 ∩ (WT2 ∪ RT2) ≠ Ø

• Validation (T2)
oAnalyze the Past

• Version # is same

• Invalidation (T1)
oAnalyze the Future

• T2.valid = false

Opacity

Gottschlich, Vachharajani, and Siek 5

• Validation
oVersion # is same

• Invalidation
oCheck valid != false

Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

Validation Vs. Invalidation

6

of in-flight transactions

e
l
e

m
e
n

t
s

p

e
r

t
x

validation
variable

validation

invalidation

Gottschlich, Vachharajani, and Siek

variable
invalidation

Contending + Concurrent Workload

7

Commit to Executed Ratio: Commits / Executed
Max = 1, Min = 0

Gottschlich, Vachharajani, and Siek Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

1-Writer, N-Reader

Side-By-Side Analysis

8

Commit / Executed: 1 / M Commit / Executed: (M-1) / M

…

Validation Invalidation

lim
𝑀→∞

1

𝑀
= 0 lim

𝑀→∞

(𝑀−1)

𝑀
= 1

Gottschlich, Vachharajani, and Siek Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

Algorithmic Growth

9

 𝑗

𝑟
𝑖

𝑗=1

𝑀

𝑖=1

Validation =

 𝑟𝑖 + 𝑤𝑖 𝑠𝑟𝑗 𝑟𝑗 + 𝑠𝑤𝑗 𝑤𝑗

𝐹
𝑖

𝑗=1

𝑀

𝑖=1

 Invalidation =

 𝑟𝑖 + (2𝑘𝑤 ∗ 𝐹𝑖)

𝑀

𝑖=1

 Bloom Inval =

Gottschlich, Vachharajani, and Siek Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

Efficient Read-Only
Transactions

10

 𝑗

𝑟𝑖

𝑗=1

𝑀

𝑖=1

Validation Read-Only =

 𝑟𝑖

𝑀

𝑖=1

 Invalidation Read-Only =

Gottschlich, Vachharajani, and Siek

 𝑟𝑖 + 𝑤𝑖 𝑠𝑟𝑗 𝑟𝑗 + 𝑠𝑤𝑗 𝑤𝑗

𝐹
𝑖

𝑗=1

𝑀

𝑖=1

 Invalidation =

Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

Validation + Memory

atomic { x = y / z; }
Addressable
memory

Cache line size

x

 z

 y

L1 Cache

N = Elements per tx
O(N2) cache misses per tx

x

 z

 y

Gottschlich, Vachharajani, and Siek 11

Invalidation + Memory

atomic { x = y / z; }
Addressable
memory

Cache line size

x

 z

 y

L1 Cache

x z y

M = # of in-flight txes
N = # of read elements
O(N + M) cache miss per tx

x z y

? ? ?

Bloom Filter

? ? ?

Other Tx

Gottschlich, Vachharajani, and Siek 12 Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

Linked List

Gottschlich, Vachharajani, and Siek 13 Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

1-Writer / N-Readers

Gottschlich, Vachharajani, and Siek 14 Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

Hash Table

Gottschlich, Vachharajani, and Siek 15 Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

Zoomed Hash Table

0

1000

2000

3000

64k 128k 256k

TL2

iFair

Gottschlich, Vachharajani, and Siek 16

validation

invalidation

inserts/lookups per thread

se
co

n
d

s

Few Txes
Few Elements

Few Txes
Many Elements

Many Txes
Many Elements

Many Txes
Few Elements

Conclusion
• Invalidation (InvalSTM) can be efficient

• Next up
o Proof of correctness for Full Invalidation

o InvalSTM + STAMP

• Special thanks to Spear and Herlihy
Gottschlich, Vachharajani, and Siek 17

Few Txes
Few Elements

Many Txes
Many Elements

Many Txes
Few Elements

of in-flight transactions

e
l
e

m
e

n
t
s

p

e
r

t
x

validation
variable

validation

variable
invalidation invalidation

Gottschlich, Vachharajani, and Siek 18

Questions?

Justin E. Gottschlich
gottschl@colorado.edu

http://eces.colorado.edu/~gottschl/

mailto:gottschl@colorado.edu

