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• Problem 
o TM is not fast enough! (Cascaval et al., 2008) 

• Reason 
oConflict Detection and Opacity 

oMost TMs use Validation 

• Our solution:  
o Full Invalidation 

o InvalSTM 
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Motivation 



• Conflict Detection 
o Determine if transaction can commit 

• (Papadimitrou, “Theory of Database 
Concurrency Control,” 1986) 

• Opacity 
o Keep in-flight transactions consistent 

• (Guerraoui & Kapalka, PPoPP’08) 
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TM Performance  
Bottleneck 



Conflict Detection 
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Conflict: WT1 ∩ (WT2 ∪ RT2) ≠ Ø 

• Validation (T2) 
oAnalyze the Past 

• Version # is same 

• Invalidation (T1) 
oAnalyze the Future 

• T2.valid = false 



Opacity 
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• Validation 
oVersion # is same 

• Invalidation 
oCheck valid != false 
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Validation Vs. Invalidation 
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variable 
invalidation 



Contending + Concurrent Workload 
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Commit to Executed Ratio: Commits / Executed 
Max = 1, Min = 0 
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1-Writer, N-Reader 



Side-By-Side Analysis 
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Commit / Executed: 1 / M  Commit / Executed: (M-1) / M 

… 
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Algorithmic Growth 
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Validation = 
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 Invalidation = 

 𝑟𝑖 + (2𝑘𝑤 ∗ 𝐹𝑖)  
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 Bloom Inval = 
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Efficient Read-Only 
Transactions 
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Validation Read-Only = 
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 Invalidation Read-Only = 
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Validation + Memory 

atomic { x = y / z; } 
Addressable  
memory 

Cache line size 
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L1 Cache 

N = Elements per tx 
O(N2) cache misses per tx 
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Invalidation + Memory 

atomic { x = y / z; } 
Addressable  
memory 

Cache line size 

x 

   

       z 

               y 

L1 Cache 

x     z       y 

M = # of in-flight txes 
N = # of read elements 
O(N + M) cache miss per tx 

x     z       y 

?      ?      ? 

Bloom Filter 

?      ?      ? 

Other Tx 
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Linked List 
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1-Writer / N-Readers 
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Hash Table 
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Zoomed Hash Table 
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Conclusion 
• Invalidation (InvalSTM) can be efficient 

 

 

 

 

 

• Next up 
o Proof of correctness for Full Invalidation 

o InvalSTM + STAMP 

• Special thanks to Spear and Herlihy 
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Questions? 
 
 
 
 
 

Justin E. Gottschlich 
gottschl@colorado.edu 

http://eces.colorado.edu/~gottschl/ 
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