
Kenneth Hoste, Andy Georges and Lieven Eeckhout
Computer Systems Lab

Ghent University, Belgium
kenneth.hoste@elis.ugent.be

CGO 2010
April 26th 2010

Automated
Just-In-Time Compiler

Tuning

mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be

Just-In-Time compilation
a (very) quick introduction

 platform portability through dynamic optimization

• initially, code is interpreted or executed unoptimized

• hot code is recompiled on-the-fly with more optimization

• (re)compilation time is a part of the overall execution time

1/22

• adaptive controller detects hot code and steers recompilation

• based on sampled profiling of execution

• exploits information on runtime behavior of application

• examples: Java, .NET, ...

Just-In-Time compilation
a (very) quick introduction

• a JIT compiler has multiple optimization levels (-O0, -O1, -O2, ...)

• cost-benefit trade-off:
required compilation time vs expected speedup

• from cheap & low speedup
to expensive & high speedup

2/22

Just-In-Time compilation
a (very) quick introduction

JIT compiler tuning is complex
Currently, JIT compilers are tuned manually.

• very complex task, very time-consuming

• large number of (interacting) optimizations

• ⇒ huge design space for optimization levels

• requires in-depth knowledge about optimizations

• optimization levels need to offer suitable
cost-benefit trade-offs

• optimization levels interact with each other at run time

• retuning is required for different applications
and platforms to obtain good performance

• optimizations may yield different results

• different cost-benefit trade-offs
3/22

Automated JIT compiler tuning

We propose:

a fully automated framework for tuning JIT compilers

• for a particular set of applications

• for a particular hardware platform

• uses an evolutionary algorithm which will gradually
evolve better JIT compiler settings

• focuses both on startup and steady-state performance

4/22

Related work

• iterative compilation: targets just one single objective

 (e.g., speedup)

• COLE (CGO-2008): focuses on static compilers

• other work (Cavazos & O’Boyle): requires significant

changes to the JIT compiler codebase

Prior work is insufficient for fully automated

tuning of existing JIT compilers.

5/22

Prior work is insufficient

JIT compilers pose several new challenges
compared to static compilers...

• multiple interacting optimization levels

• tunable adaptive controller that steers recompilation

Applying our COLE framework to a JIT compiler
yields unsatisfactory results:

• representation of JIT compiler too complex for
an evolutionary algorithm to handle

• crossover? mutation?

• disappointing performance, excessively long exploration

6/22

Our approach

 split the tuning process into two steps

• step 1: optimization plans

• step 2: JIT compiler configurations

• optimization plan:
 set of optimizations and value parameters

• optimization level:
 optimization plan used in JIT compiler

• JIT compiler configuration:
 multiple optimization levels + tuned controller

T

7/22

In short: evolutionary algorithms

8/22

. . .

each entity represents
one optimization plan
or JIT compiler setting crossover

&
mutation

. . .

randomly recombining
and tuning

best entities
are selected

iterate until
co

n
vergen

ce

Trading off cost and benefit

Step I: Pareto-optimal optimization plans

• use COLE framework to find
interesting optimization plans
=> trade off compilation rate
and speedup

• a set of Pareto optimal
optimization plans are evolved
=> complex interactions between
 plans are avoided (for now)

• a limited number of Pareto optimal plans
are selected for step II

compilation rate

sp
ee

d
up

9/22

Combine and conquer

Step II: combine optimization plans and finetune

compilation rate

sp
ee

d
up

JIT compilers:

...

steady-state perf.

st
ar

tu
p

pe
rf
.

x
x

xxx

xx
x

x
x

x

x

finetune
parameters

8 selected plans

=> 92 initial JIT
 compiler
 configurations

10/22

Experimental setup

• JikesRVM v3.0.1 (Java), 32-bit production build

• 16 benchmarks (SPECjvm98: 7, DaCapo 2006-10-MR2: 9)

• 4 different hardware platforms

• AMD Opteron

• Intel Pentium 4

• Intel Core 2

• Intel Core i7

• both steady-state and startup performance

• statistically rigorous performance analysis

• different heap sizes are considered (min. x2/x4/x8)

11/22

JIT compilation in Jikes RVM

Adaptive Optimization System (AOS)

hot method

opt. plan O0

opt. plan O1

opt. plan O2

compiler

profiler controller

optimized
method

optimized methods
O0 O1 O2

bytecode

12/22

initially only
base compiled code

is executed

hot code gets
optimized

dynamically
if it is beneficial

sampled profiling
identifies hot code

Global tuning: optimization plans

Pareto optimal
optimization plans

=> competitive with
 manually tuned
 optimization plans

=> too many, so pick
 a selected subset
 with a good spread
 along Pareto-curve

13/22

Global tuning: JIT compiler settings

tuning for SPECjvm98

tuning for DaCapo

roughly same steady-state
performance as manually
tuned default, slightly
better startup performance

14/22

point of reference:

manually tuned
default Jikes RVM

Cross-validation
tune for DaCapo, evaluate with SPECjvm98

JIT compiler tuned for DaCapo
performs well for SPECjvm98

15/22

JIT compiler tuned for SPECjvm98
performs well for DaCapo

DaCapo is a lot
more complex !!!

Cross-validation
tune for SPECjvm98, evaluate with DaCapo

16/22

Application-specific tuning

 startup

steady-state

significant speedups for
several benchmarks by
specializing the JIT
compiler for one single
application

17/22

Cross-platform evaluation

significant speedups for different hardware platforms

mtrt
steady-state startup

luindex
steady-state startup

18/22

Retuning for a different platform

different platforms result in different tradeoffs

19/22

optimization plans

Retuning for a different platform

retuning for a new platform is important

to obtain to best possible performance
20/22

cross-validation of JIT compiler tuned for mtrt @ Intel Core 2

Exploration time

• evaluating an optimization plan or
JIT compiler setting takes time

• execute (all) application(s) multiple times

• embarrassingly parallel (per generation)

• global tuning for SPECjvm98 and DaCapo
• step 1: +/- 550 hours, step 2: 1320 hours

• with sufficient resources: about 3 days

• application-specific tuning: matter of hours

• feasible, but room for improvement
• limit number of evaluations

• partial evaluation (e.g., only some benchmarks)

21/22

Conclusions

automatically tuning a JIT compiler is feasible

• average performance is competitive with
a manually tuned JIT compiler

• tuning the JIT compiler for one application
yields significant speedups

• retuning for a different set of applications,
or a different platform, is important to
obtain really good performance

22/22

Kenneth Hoste, Andy Georges and Lieven Eeckhout
Computer Systems Lab

Ghent University, Belgium
kenneth.hoste@elis.ugent.be

CGO 2010
April 26th 2010

Automated
Just-In-Time Compiler

Tuning

mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be
mailto:kenneth.hoste@elis.ugent.be

