Automatic Creation of Tile Size Selection Models

Tomofumi Yuki Lakshminarayanan Renganarayanan Sanjay Rajopadhye Charles Anderson Alexandre Eichenberger Kevin O'Brien

Colorado State University

IBM Research

Tile Size Selection Problem

Variation in perfomance of tiled code (opteron)

Tile Size (cubic)

Variation in performance of tiled code (power5)

- Tiling is an optimization with a parameter "tile size"
- Finding good tile sizes is essential to benefit from tiling
- Good tile sizes can be different for each hardware/application

Problems

- Several factors influence performance of tiled code
- Hardware and software keep changing
- Analytical Models (existing approach):
 - Require expert knowledge and significant time
- Auto Tuning/Iterative Compilation:
 - Long compilation time

Can we automate TSS model development?

Problems

- Several factors influence performance of tiled code
- Hardware and software keep changing
- Analytical Models (existing approach):
 - Require expert knowledge and significant time
- Auto Tuning/Iterative Compilation:
 - Long compilation time

Can we automate TSS model development? YES we use ML to automate this process

Outline

- Background
 - Tiling
 - Performance considerations for tiled codes
 - Neural Networks
- Approach
- Performance Evaluation
- Conclusions and Future Work

Tiling

original loop for (i=0; i<=8; i++) for (j=0; j<=8; j++) tiled loop for (ti=0; ti <= 8; ti+=3) for (tj=0; tj <= 8; tj+=3) for (i=ti; i < ti+3; i++) for (j=tj; j < tj+3; j++)

Tiling

original loop for (i=0; i<=8; i++) for (j=0; j<=8; j++) tiled loop for (ti=0; ti <= 8; ti+=3) for (tj=0; tj <= 8; tj+=3) for (i=ti; i < ti+3; i++) for (j=tj; j < tj+3; j++)

Tiling for Locality

-Array M is indexed by j
Untiled: 9 locations accessed before next i
Tiled: 3 locations accessed before next i
=>Better reuse if cache cannot store 9 elements

Performance Considerations

- Different Types of Cache Misses
 - Cold Miss
 - Unavoidable cost when data is first read into cache
 - Capacity Miss
 - Evicted from cache before reuse due to capacity
 - LRU eviction is assumed
 - Conflict Miss
 - Evicted from cache before reuse due to conflicts
 - Self conflict and cross conflict

Hardware Prefetching

- Hardware to detect access patterns and load data ahead of time
- Large impact on performance of tiled code

Hardware Prefetching

- Hardware to detect access patterns and load data ahead of time
- Large impact on performance of tiled code

Unit-Stride prefetching : next = prev + 1

Neural Networks

Important Characteristics

-Supervised Learning:

Requires input and desired output for training

-Using neural networks is fast (matrix-vector product)

-Many parameters (number of nodes, layers, and so on)

Outline

- Background
- Approach
 - Class of Programs
 - TSS Model Structure
 - Data Collection
 - Training
 - Use of the Model
- Performance Evaluation
- Conclusions and Future Work

Class of Programs

- Affine Control Loops
 - Tiled code generators are available
 - Many programs that benefit from tiling fit
- Constraint on Tiling
 - One-level tiling for cache locality
 - Cubic tile sizes
 - To limit data collection time
 - 2D data, 3D loops
 - 4D+ loops are handled by tiling innermost 3

TSS Model Structure

- Input: Program Features
 - High-level characterization of reuse
 - Total of 6 features
 - Based on number of references in the statement
 - (1) Prefetched
 - (2) Non-Prefetched
 - (3) Invariant
 - Each type is further separated by Read/Write
- Output: Optimal Tile Size

Overview of Our Approach

- 1.Data Collection
- 2.Learning TSS Models Using NN
 - One model for each architecture/compiler
- 3.Use of the Model During Compilation
 - Extract program features
 - Compute NN output

Only step 3 is performed during compilation

Data Collection

- Use of Synthetic Programs
 - Select a range of program features
 - Generate programs that has the required feature
 - Run the programs to find optimal tile sizes
- Advantages
 - Comprehensive and rich training data set
 - Uniform coverage
 - Avoid multiple programs with same features
 - Easy to get a large set of training data

Model Learning and Use

- Model Learning
 - Neural network parameters are manually tuned
 - Only step in model creation that is not automated
 - After designing a general structure, small tuning was required for different architecture
- Use
 - Feature extraction is straight forward
 - Computing NN output is instantaneous
 - Use of the model is inexpensive

Performance Evaluation

- Evaluated by comparing the performance of predicted tiles and the actual optimal
- Trained separate models for each architecturecompiler combination
- 3 architectures, 2 compilers each

Architecture	Compilers	L1 Cache	HW Prefetcher
Opteron	PSC, GCC	64KB 2-way	unit-stride
Power5	XLC, GCC	32KB 4-way	unit-stride
Core2Duo	ICC, GCC	32KB 8-way	constant-stride

Results

Execution time using trained models, normalized to the true optimal

-No worse than 20% slower compared to the true optimal -Consistent across all architecture-compiler combinations

Performance of LRW

-Analytical model that predicts square tiles [LRW] -Tailored to take HW prefetching into account

[LRW] M.D. Lam, E.E. Rothberg, and M.E. Wolf. 1991

Conclusions & Future Work

Conclusions

Reasonably accurate TSS models can be automatically constructed with "Semantic Features + Synthetic Programs + NN"

- Implemented in the IBM XLC
- Future Work
 - Extending class of programs
 - Automatic NN parameter tuning
 - Extract insight from the model

Questions?