
Automatic Creation of Tile
Size Selection Models

Tomofumi Yuki
Lakshminarayanan Renganarayanan
Sanjay Rajopadhye
Charles Anderson
Alexandre Eichenberger
Kevin O'Brien

Colorado State University IBM Research

2

Tile Size Selection Problem

● Tiling is an
optimization with a
parameter “tile size”

● Finding good tile
sizes is essential to
benefit from tiling

● Good tile sizes can
be different for each
hardware/application

3

Problems
● Several factors influence performance of tiled

code
● Hardware and software keep changing
● Analytical Models (existing approach):

● Require expert knowledge and significant time

● Auto Tuning/Iterative Compilation:
● Long compilation time

Can we automate TSS model development?

4

Problems
● Several factors influence performance of tiled

code
● Hardware and software keep changing
● Analytical Models (existing approach):

● Require expert knowledge and significant time

● Auto Tuning/Iterative Compilation:
● Long compilation time

Can we automate TSS model development?

YES we use ML to automate this process

5

Outline

● Background
● Tiling
● Performance considerations for tiled codes
● Neural Networks

● Approach
● Performance Evaluation
● Conclusions and Future Work

6

Tiling

original loop
for (i=0; i<=8; i++)
 for (j=0; j<=8; j++)

tiled loop
for (ti=0; ti <= 8; ti+=3)
 for (tj=0; tj <= 8; tj+=3)
 for (i=ti; i < ti+3; i++)
 for (j=tj; j < tj+3; j++)

7

Tiling

original loop
for (i=0; i<=8; i++)
 for (j=0; j<=8; j++)

tiled loop
for (ti=0; ti <= 8; ti+=3)
 for (tj=0; tj <= 8; tj+=3)
 for (i=ti; i < ti+3; i++)
 for (j=tj; j < tj+3; j++)

8

Tiling for Locality

-Array M is indexed by j
Untiled: 9 locations accessed before next i
Tiled: 3 locations accessed before next i
=>Better reuse if cache cannot store 9 elements

M

9

Performance Considerations

● Different Types of Cache Misses
● Cold Miss

– Unavoidable cost when data is first read into cache
● Capacity Miss

– Evicted from cache before reuse due to capacity
– LRU eviction is assumed

● Conflict Miss
– Evicted from cache before reuse due to conflicts
– Self conflict and cross conflict

10

Hardware Prefetching

● Hardware to detect access patterns and load
data ahead of time

● Large impact on performance of tiled code

11

Hardware Prefetching

● Hardware to detect access patterns and load
data ahead of time

● Large impact on performance of tiled code

1 2 3 4

Unit-Stride prefetching : next = prev + 1

12

Neural Networks

Important Characteristics
-Supervised Learning:
 Requires input and desired output for training
-Using neural networks is fast (matrix-vector product)
-Many parameters (number of nodes, layers, and so on)

13

Outline

● Background
● Approach

● Class of Programs
● TSS Model Structure
● Data Collection
● Training
● Use of the Model

● Performance Evaluation
● Conclusions and Future Work

14

Class of Programs

● Affine Control Loops
● Tiled code generators are available
● Many programs that benefit from tiling fit

● Constraint on Tiling
● One-level tiling for cache locality
● Cubic tile sizes

– To limit data collection time
● 2D data, 3D loops

– 4D+ loops are handled by tiling innermost 3

15

TSS Model Structure

● Input: Program Features
● High-level characterization of reuse
● Total of 6 features

– Based on number of references in the statement
(1) Prefetched

(2) Non-Prefetched

(3) Invariant
 Each type is further separated by Read/Write

● Output: Optimal Tile Size

16

Overview of Our Approach

1.Data Collection

2.Learning TSS Models Using NN
• One model for each architecture/compiler

3.Use of the Model During Compilation
• Extract program features
• Compute NN output

Only step 3 is performed during compilation

17

Data Collection

● Use of Synthetic Programs
● Select a range of program features
● Generate programs that has the required feature
● Run the programs to find optimal tile sizes

● Advantages
● Comprehensive and rich training data set

– Uniform coverage
– Avoid multiple programs with same features
– Easy to get a large set of training data

18

Model Learning and Use

● Model Learning
● Neural network parameters are manually tuned

– Only step in model creation that is not automated
– After designing a general structure, small tuning was

required for different architecture

● Use
● Feature extraction is straight forward
● Computing NN output is instantaneous
● Use of the model is inexpensive

19

Performance Evaluation

● Evaluated by comparing the performance of
predicted tiles and the actual optimal

● Trained separate models for each architecture-
compiler combination

● 3 architectures, 2 compilers each

Architecture Compilers L1 Cache HW Prefetcher

Opteron PSC, GCC 64KB 2-way unit-stride

Power5 XLC, GCC 32KB 4-way unit-stride

Core2Duo ICC, GCC 32KB 8-way constant-stride

20

Results

-No worse than 20% slower compared to the true optimal
-Consistent across all architecture-compiler combinations

MMM TMM SSYRK SSY2K STRMM STRSM LUD SSYMM TRISOLV
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Execution time using trained models, normalized to the true optimal

Opteron/PSC Opteron/GCC Power5/XLC
Power5/GCC Core2Duo/ICC Core2Duo/GCC

N
o

rm
a

liz
e

d
 E

xe
cu

tio
n

T
im

e

21

Performance of LRW

[LRW] M.D. Lam, E.E. Rothberg, and M.E. Wolf. 1991

-Analytical model that predicts square tiles [LRW]

-Tailored to take HW prefetching into account

MMM TMM SSYRK SSY2K STRMM STRSM LUD SSYMM TRISOLV
0

1

2

3

4

5

6

7

Execution time using LRW, normalized to the true optimal

Opteron/PSC Opteron/GCC Power5/XLC
Power5/GCC Core2Duo/ICC Core2Duo/GCC

N
o

rm
a

liz
e

d
 E

xe
cu

tio
n

T
im

e

22

Conclusions & Future Work
● Conclusions

Reasonably accurate TSS models can be
automatically constructed with
“Semantic Features + Synthetic Programs + NN”

● Implemented in the IBM XLC
● Future Work

● Extending class of programs
● Automatic NN parameter tuning
● Extract insight from the model

23

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

