Automatic Creation of Tile
Size Selection Models

Tomofumi Yuki

Sanjay Rajopadhye
Charles Anderson

Colorado State University

MNormalized Execution Time

1.0

Normalized Execution Time

2.5

2.0

1.5

4 5

3

2

1

Tile Size Selection Problem

Variation in perfomance of tiled code (opteron)

o SSYRK ¢ STRMM o
O SSYR2K A STRSM / o
O .

&
® MMM
. \ o TMM

T !
5 10 15 20
Tile Size (cubic)

Variation in performance of tiled code (power5)

4 ® MMM

« TMM

| o ssYRK

o SSYR2K

© STRMM

4 & STRSM @
L]

D‘_______,’”D Z
0__._._._._.___.________________

—
- /

T T T |
0 50 100 150 200 250

Tile Size (cubic)

* Tiling is an

optimization with a
parameter “tile size”

* Finding good tile

sizes IS essential to
benefit from tiling

e Good tile sizes can

be different for each
hardware/application

Problems

e Several factors influence performance of tiled
code

 Hardware and software keep changing
* Analytical Models (existing approach):

* Require expert knowledge and significant time
e Auto Tuning/lterative Compilation:
* Long compilation time
Can we automate TSS model development?

Problems

e Several factors influence performance of tiled
code

 Hardware and software keep changing
* Analytical Models (existing approach):

* Require expert knowledge and significant time
e Auto Tuning/lterative Compilation:
* Long compilation time
Can we automate TSS model development?
YES we use ML to automate this process

Outline

* Background
* Tiling
* Performance considerations for tiled codes
 Neural Networks

e Approach
e Performance Evaluation

e Conclusions and Future Work

— & & 8 s & s s = = ﬁ —
E] I !;.- [T | E 1T T 1 L_ 1T |
original loop tiled 10013 . .
for (1:0, i<:8; i_|__|_) for (tlzp; t1 <.: 8, t1‘|‘.:3)
for (j=0; j<=8; j++) for (1)=0; tj <= §; yj+=3)

for (i=t1; 1 < t1+3; 1++)
for (j=tj; j <tj+3; j++)

— % ¥ §F = * # & * @ — (l‘fl [] L] L] L L]
1444800000 i w A
— & sl & & & & & & @ — ® @ e o @ o @
E — & | ® = = # s & = e T & w|(e = =
B AN O > - ?\N A R
— e |s s & & & & & @ — @ e @ o o @ o @
— ®* |\® |® = ® = * * ¥ — (i\ fi] L] L L} L}
I R i N\£ P | K
00— o W &% & & & o s @ 0 — = Jl® o o l® o @
17 1 T 1T 1 1T 1T T T 1

] 5 i 0] i

original loop tiled 10013 _ ,
for (1:0, i<:8; i_|__|_) for (tlzp; t1 <.: 8, t1‘|‘.:3)
for (j=0; j<=8; j++) for (4=0; § <= 8; [+=3)
for (1=t1; 1 < t1+3; 1++)
for (j=tj; j <tj+3; j++)

]

Tiling for Locality

-Array M 1s indexed by |

]

(] '- L] --‘ '- L] L]
L] L] L] - L] L]
:IJ f E LI P

i\" E:E" g (-

('\ f' L} -\ f' L] L]
W L] L] L] - - -
® J@ s es]l@ = =

Untiled: 9 locations accessed before next 1

Tiled:

3 locations accessed before next 1

=>Better reuse if cache cannot store 9 elements

Performance Considerations

» Different Types of Cache Misses
* Cold Miss

- Unavoidable cost when data is first read into cache
 Capacity Miss

- Evicted from cache before reuse due to capacity

- LRU eviction is assumed

e Conflict Miss

- Evicted from cache before reuse due to conflicts
— Self conflict and cross conflict

Hardware Prefetching

« Hardware to detect access patterns and load
data ahead of time

e Large impact on performance of tiled code

10

Hardware Prefetching

« Hardware to detect access patterns and load
data ahead of time

e Large impact on performance of tiled code

Unit-Stride prefetching : next = prev + 1

11

Neural Networks

Input Layer b
Hidden
Layer 1

Hidden
Layer 2

Important Characteristics
-Supervised Learning:

Requires input and desired output for training
-Using neural networks 1s fast (matrix-vector product)

-Many parameters (number of nodes, layers, and so on)
12

 Background
 Approach

Outline

» Class of Programs
 TSS Model Structure

 Data Collection

e Training

e Use of the Model
 Performance Eva

e Conclusions and

uation

~uture Work

13

Class of Programs

o Affine Control Loops

* Tiled code generators are available
* Many programs that benefit from tiling fit

» Constraint on Tiling

* One-level tiling for cache locality

e Cubic tile sizes

— To limit data collection time
» 2D data, 3D loops
- 4D+ loops are handled by tiling innermost 3

14

TSS Model Structure

e |nput: Program Features

» High-level characterization of reuse

e Total of 6 features

- Based on number of references in the statement

(1) Prefetched

(2) Non-Prefetched

(3) Invariant

+ Each type is further separated by Read/Write

e Output: Optimal Tile Size

15

Overview of Our Approach

1.Data Collection
2.Learning TSS Models Using NN

- One model for each architecture/compiler
3.Use of the Model During Compilation

- Extract program features
- Compute NN output

Only step 3 is performed during compilation

16

Data Collection

e Use of Synthetic Programs

» Select a range of program features
 Generate programs that has the required feature
* Run the programs to find optimal tile sizes

 Advantages

» Comprehensive and rich training data set

- Uniform coverage
- Avoid multiple programs with same features
- Easy to get a large set of training data

17

Model Learning and Use

 Model Learning

* Neural network parameters are manually tuned

— Only step in model creation that is not automated

- After designing a general structure, small tuning was
required for different architecture

e Use

* Feature extraction is straight forward
 Computing NN output is instantaneous
* Use of the model is inexpensive

18

Performance Evaluation

e Evaluated by comparing the performance of
predicted tiles and the actual optimal

* Trained separate models for each architecture-

compiler combination

e 3 architectures, 2 compilers each

Architecture
Opteron
Powerd
Core2Duo

Compilers
PSC, GCC
XLC, GCC
ICC, GCC

L1 Cache

64KB 2-way
32KB 4-way
32KB 8-way

HW Prefetcher
unit-stride
unit-stride

constant-stride

19

Normalized Execution Time

1.4

1.2

0.8

0.6

0.4

0.2

MMM

Results

Execution time using trained models, normalized to the true optimal

B Opteron/PSC M Opteron/GCC [] Power5/XLC
B Power5/GCC M Core2Duo/ICC [Core2Duo/GCC

™M SSYRK SSY2K STRMM STRSM LUD SSYMM TRISOLV

-No worse than 20% slower compared to the true optimal
-Consistent across all architecture-compiler combinations

20

Normalized Execution Time

o =~ N WO & 00 0O N

Performance of LRW

Execution time using LRW, normalized to the true optimal

M Opteron/PSC M Opteron/GCC [] Power5/XLC
B Power5/GCC M Core2Duo/ICC L[Core2Duo/GCC

hhﬁﬂﬁmm&ﬁ

SSYRK SSY2K STRMM STRSM SSYMM TRISOLV

-Analytical model that predicts square tiles [LRW]
-Tailored to take HW prefetching into account

[LRW] M.D. Lam, E.E. Rothberg, and M.E. Wolf. 1991

21

Conclusions & Future Work

e Conclusions

Reasonably accurate TSS models can be
automatically constructed with
“Semantic Features + Synthetic Programs + NN”

* Implemented in the IBM XLC
* Future Work

* Extending class of programs
 Automatic NN parameter tuning
» Extract insight from the model

22

Questions?

23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

