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Tile Size Selection Problem

Variation in perfomance of tiled code (opteron)
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Variation in performance of tiled code (power5)
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* Tiling is an

optimization with a
parameter “tile size”

* Finding good tile

sizes IS essential to
benefit from tiling

e Good tile sizes can

be different for each
hardware/application



Problems

e Several factors influence performance of tiled
code

 Hardware and software keep changing
* Analytical Models (existing approach):

* Require expert knowledge and significant time
e Auto Tuning/lterative Compilation:
* Long compilation time
Can we automate TSS model development?



Problems

e Several factors influence performance of tiled
code

 Hardware and software keep changing
* Analytical Models (existing approach):

* Require expert knowledge and significant time
e Auto Tuning/lterative Compilation:
* Long compilation time
Can we automate TSS model development?
YES we use ML to automate this process



Outline

* Background
* Tiling
* Performance considerations for tiled codes
 Neural Networks

e Approach
e Performance Evaluation

e Conclusions and Future Work
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original loop tiled 10013 . .
for (1:0, i<:8; i_|__|_) for (tlzp; t1 <.: 8, t1‘|‘.:3)
for (j=0; j<=8; j++) for (1)=0; tj <= §; yj+=3)

for (i=t1; 1 < t1+3; 1++)
for (j=tj; j <tj+3; j++)
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original loop tiled 10013 _ ,
for (1:0, i<:8; i_|__|_) for (tlzp; t1 <.: 8, t1‘|‘.:3)
for (j=0; j<=8; j++) for (4=0; § <= 8; [+=3)
for (1=t1; 1 < t1+3; 1++)
for (j=tj; j <tj+3; j++)
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Tiling for Locality
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Untiled: 9 locations accessed before next 1

Tiled:

3 locations accessed before next 1

=>Better reuse if cache cannot store 9 elements



Performance Considerations

» Different Types of Cache Misses
* Cold Miss

- Unavoidable cost when data is first read into cache
 Capacity Miss

- Evicted from cache before reuse due to capacity

- LRU eviction is assumed

e Conflict Miss

- Evicted from cache before reuse due to conflicts
— Self conflict and cross conflict



Hardware Prefetching

« Hardware to detect access patterns and load
data ahead of time

e Large impact on performance of tiled code
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Hardware Prefetching

« Hardware to detect access patterns and load
data ahead of time

e Large impact on performance of tiled code

Unit-Stride prefetching : next = prev + 1
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Neural Networks

Input Layer b
Hidden
Layer 1

Hidden
Layer 2

Important Characteristics
-Supervised Learning:

Requires input and desired output for training
-Using neural networks 1s fast (matrix-vector product)

-Many parameters (number of nodes, layers, and so on)
12



 Background
 Approach

Outline

» Class of Programs
 TSS Model Structure

 Data Collection

e Training

e Use of the Model
 Performance Eva

e Conclusions and

uation

~uture Work
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Class of Programs

o Affine Control Loops

* Tiled code generators are available
* Many programs that benefit from tiling fit

» Constraint on Tiling

* One-level tiling for cache locality

e Cubic tile sizes

— To limit data collection time
» 2D data, 3D loops
- 4D+ loops are handled by tiling innermost 3
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TSS Model Structure

e |nput: Program Features

» High-level characterization of reuse

e Total of 6 features

- Based on number of references in the statement

(1) Prefetched

(2) Non-Prefetched

(3) Invariant

+ Each type is further separated by Read/Write

e Output: Optimal Tile Size
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Overview of Our Approach

1.Data Collection
2.Learning TSS Models Using NN

- One model for each architecture/compiler
3.Use of the Model During Compilation

- Extract program features
- Compute NN output

Only step 3 is performed during compilation
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Data Collection

e Use of Synthetic Programs

» Select a range of program features
 Generate programs that has the required feature
* Run the programs to find optimal tile sizes

 Advantages

» Comprehensive and rich training data set

- Uniform coverage
- Avoid multiple programs with same features
- Easy to get a large set of training data
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Model Learning and Use

 Model Learning

* Neural network parameters are manually tuned

— Only step in model creation that is not automated

- After designing a general structure, small tuning was
required for different architecture

e Use

* Feature extraction is straight forward
 Computing NN output is instantaneous
* Use of the model is inexpensive
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Performance Evaluation

e Evaluated by comparing the performance of
predicted tiles and the actual optimal

* Trained separate models for each architecture-

compiler combination

e 3 architectures, 2 compilers each

Architecture
Opteron
Powerd
Core2Duo

Compilers
PSC, GCC
XLC, GCC
ICC, GCC

L1 Cache

64KB 2-way
32KB 4-way
32KB 8-way

HW Prefetcher
unit-stride
unit-stride

constant-stride
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Normalized Execution Time
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Results

Execution time using trained models, normalized to the true optimal
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-No worse than 20% slower compared to the true optimal
-Consistent across all architecture-compiler combinations
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Normalized Execution Time
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Performance of LRW

Execution time using LRW, normalized to the true optimal
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-Analytical model that predicts square tiles [LRW]
-Tailored to take HW prefetching into account

[LRW] M.D. Lam, E.E. Rothberg, and M.E. Wolf. 1991
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Conclusions & Future Work

e Conclusions

Reasonably accurate TSS models can be
automatically constructed with
“Semantic Features + Synthetic Programs + NN”

* Implemented in the IBM XLC
* Future Work

* Extending class of programs
 Automatic NN parameter tuning
» Extract insight from the model

22



Questions?
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