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Tile Size Selection Problem

● Tiling is an 
optimization with a 
parameter “tile size”

● Finding good tile 
sizes is essential to 
benefit from tiling

● Good tile sizes can 
be different for each 
hardware/application
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Problems
● Several factors influence performance of tiled 

code
● Hardware and software keep changing
● Analytical Models (existing approach):

● Require expert knowledge and significant time

● Auto Tuning/Iterative Compilation:
● Long compilation time

Can we automate TSS model development?
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Problems
● Several factors influence performance of tiled 

code
● Hardware and software keep changing
● Analytical Models (existing approach):

● Require expert knowledge and significant time

● Auto Tuning/Iterative Compilation:
● Long compilation time

Can we automate TSS model development?

YES we use ML to automate this process
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Outline

● Background
● Tiling
● Performance considerations for tiled codes
● Neural Networks

● Approach
● Performance Evaluation
● Conclusions and Future Work
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Tiling

original loop
for (i=0; i<=8; i++)
   for (j=0; j<=8; j++)

tiled loop
for (ti=0; ti <= 8; ti+=3)
   for (tj=0; tj <= 8; tj+=3)
      for (i=ti; i < ti+3; i++)
         for (j=tj; j < tj+3; j++)
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Tiling for Locality

-Array M is indexed by j
Untiled: 9 locations accessed before next i
Tiled:    3 locations accessed before next i
=>Better reuse if cache cannot store 9 elements

M



9

Performance Considerations

● Different Types of Cache Misses
● Cold Miss

– Unavoidable cost when data is first read into cache
● Capacity Miss

– Evicted from cache before reuse due to capacity
– LRU eviction is assumed

● Conflict Miss
– Evicted from cache before reuse due to conflicts
– Self conflict and cross conflict
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Hardware Prefetching

● Hardware to detect access patterns and load 
data ahead of time

● Large impact on performance of tiled code
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Hardware Prefetching

● Hardware to detect access patterns and load 
data ahead of time

● Large impact on performance of tiled code

1 2 3 4

Unit-Stride prefetching : next = prev + 1
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Neural Networks

Important Characteristics
-Supervised Learning:
   Requires input and desired output for training
-Using neural networks is fast (matrix-vector product)
-Many parameters (number of nodes, layers, and so on)
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Outline

● Background
● Approach

● Class of Programs
● TSS Model Structure
● Data Collection
● Training
● Use of the Model

● Performance Evaluation
● Conclusions and Future Work
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Class of Programs

● Affine Control Loops
● Tiled code generators are available
● Many programs that benefit from tiling fit

● Constraint on Tiling
● One-level tiling for cache locality
● Cubic tile sizes

– To limit data collection time
● 2D data, 3D loops

– 4D+ loops are handled by tiling innermost 3
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TSS Model Structure

● Input: Program Features
● High-level characterization of reuse
● Total of 6 features

– Based on number of references in the statement
(1) Prefetched

(2) Non-Prefetched

(3) Invariant
 Each type is further separated by Read/Write

● Output: Optimal Tile Size
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Overview of Our Approach

1.Data Collection

2.Learning TSS Models Using NN
• One model for each architecture/compiler

3.Use of the Model During Compilation
• Extract program features
• Compute NN output

Only step 3 is performed during compilation
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Data Collection

● Use of Synthetic Programs
● Select a range of program features
● Generate programs that has the required feature
● Run the programs to find optimal tile sizes

● Advantages
● Comprehensive and rich training data set

– Uniform coverage
– Avoid multiple programs with same features
– Easy to get a large set of training data
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Model Learning and Use

● Model Learning
● Neural network parameters are manually tuned

– Only step in model creation that is not automated
– After designing a general structure, small tuning was 

required for different architecture

● Use
● Feature extraction is straight forward
● Computing NN output is instantaneous
● Use of the model is inexpensive
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Performance Evaluation

● Evaluated by comparing the performance of 
predicted tiles and the actual optimal

● Trained separate models for each architecture-
compiler combination

● 3 architectures, 2 compilers each

Architecture Compilers L1 Cache HW Prefetcher

Opteron PSC, GCC 64KB 2-way unit-stride

Power5 XLC, GCC 32KB 4-way unit-stride

Core2Duo ICC, GCC 32KB 8-way constant-stride
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Results

-No worse than 20% slower compared to the true optimal
-Consistent across all architecture-compiler combinations
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Performance of LRW

[LRW] M.D. Lam, E.E. Rothberg, and M.E. Wolf. 1991

-Analytical model that predicts square tiles [LRW]

-Tailored to take HW prefetching into account
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Conclusions & Future Work
● Conclusions

Reasonably accurate TSS models can be 
automatically constructed with 
“Semantic Features + Synthetic Programs + NN”

● Implemented in the IBM XLC
● Future Work

● Extending class of programs
● Automatic NN parameter tuning
● Extract insight from the model
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Questions?
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