Exploiting Statistical Correlations for Proactive Prediction of Program Behaviors

Yunlian Jiang, Eddy Zhang, Kai Tian, Feng Mao, Malcom Gethers, Xipeng Shen CAPS Research Group, College of William and Mary, USA

> Yaoqing Gao IBM Toronto Lab, Canada

Prerequisite for Optimizations

Accurate prediction of how programs would behave. Program Behaviors (procedure calling freq, locality, loop trip counts...)

Program Behavior Predictions

Property	Accuracy	Scope	Timing
Opt			(Proactivity)
Static Compilation			
Profile Feedback			
Runtime Adaptive Optimization		~	

Idea: Predicting behavior from inputs as program starts

Problem: Requiring manual characterization of inputs

Our Solution

Exploit correlations among program components for proactive runtime prediction and optimization

```
main(int argc, char * argv){
                                           Mesh * mesh init
                                            (char * initInfoF, Mesh* mesh, Mesh* refMesh)
 mesh init (dataFile,mesh,refMesh);
 genMesh (mesh,0,mesh->vN);
                                             // open vertices file, read # of vertices
                                              FILE * fdata = fopen (initInfoE, "r");
 verify (mesh, refMesh);
                                             fscanf (fdata, "%d, %\n", {vN
                                              mesh->vN = vN;
                                             v = (vertex*) malloc (v
// recursive mesh generation
void genMesh (Mesh *m, int left, int right)
                                             // read vertices positions
 if (right>3+left){
                                           Seminal Behavio
                                                                            [i].x, &v[i].y);
  genMesh (m, left, (left+right)/2);
  genMesh (m, (left+right)/2+1, right);
                                                               x and y values
                                             // sort vertices by
  ...}
                                             for (i=1) is \sqrt{N/A}
                                                 for (i⊨vN
                                                                 i; i--){
void verify (Mesh *m, Mesh *mRef){
                                              while (!feof(fd)
for (i=0, j=0; i< m->edgesN; i++){
                                               // read edges into refMesh for
                                              // later verification
                                                                                    9
   CAPS @ William & Mary
```

Questions to Answer

- Do such correlations exist commonly?
- How can they be automatically identified?
- Are they useful for program optimizations?

Outline

- A systematic measurement of correlations
- A framework for identification and modeling
- A demonstration of uses for optimizations
- Related work and conclusion

Behaviors under Study

- Loop trip-counts
- Procedure calling frequencies
- Block access freq. (data profiles) (by IBM XL C 10.1)
- Edge profiles and node profiles

(by a modified GCC)

- (by GNU gpof v2.19)
- (by IBM XL C 10.1)

Correlations to Measure

- Among same types of behaviors of different components
 - E.g. trip-counts of two loops
- Among different types of behaviors of different components
 - E.g. trip-counts *vs* procedure calling freq.

Benchmarks [spec 2000 & 2006]

	Prog	Factor of changes		
name	lines	inputs	loops	caused by inputs
ammp	13263	20	425	$9.9 imes10^1$
art	1270	108	101	$4.0 imes10^4$
crafty	19478	14	425	$4.6 imes 10^8$
equake	1513	100	106	$1.0 imes 10^2$
gap	59482	12	1887	$1.1 imes 10^8$
gcc	484930	72	7615	$1.1 imes 10^6$
gzip	7760	100	223	$4.3 imes10^7$
h264ref	46152	20	2074	$2.1 imes10^9$
lbm	875	120	27	$6.0 imes10^6$
mcf	1909	64	76	$1.4 imes10^5$
mesa	50230	20	995	$2.0 imes10^1$
milc	12837	10	473	$2.1 imes 10^9$
parser	10924	20	1350	$2.1 imes 10^6$
vpr	16976	20	435	$3.9 imes10^6$

[Thanks to Amaral's group for extra inputs]

CAPS @ William & Mary

Calculation of Correlations

$$r_{XY} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_X s_Y}$$
Sample standard deviation

The higher r is, the easier to predict one from the other.

		corr-coefs from loop to						
		loop	call	data	node	edge		
Strong correlations	ammp	\bigcirc	\bigcirc	\bigcirc		\bigcirc		
from loops to loops	art	\bigcirc	\bigcirc	\bigcirc	Ð			
from toops to toops	crafty	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
and to other	equake	\bigcirc	\bigcirc	\bigcirc	Ø	\bigcirc		
behaviors	gap	\bigcirc	\bigcirc					
	gcc	\bigcirc						
	gzip	\bigcirc			۲	\bigcirc		
	h264ref	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
\downarrow	lbm	\bigcirc		\bigcirc	\bigcirc	\bigcirc		
	mcf			\bigcirc	0	\bigcirc		
Uses for runtime	mesa	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		
behavior prediction	milc	\odot	\bigcirc	\bigcirc	Ð	\bigcirc		
benavior prediction	parser	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	vpr	(((٢			
	06	.67		78	.89	.91		

Outline

- A systematic measurement of correlations
- A framework for identification and modeling
- A demonstration of uses for optimizations
- Related work and conclusion

Seminal Behaviors

- A small set of program behaviors
 - Predictive capability
 - Strongly correlate with target behaviors
 - Earliness
 - Values become known early in an execution

Candidate Seminal Behaviors

Interface behaviors

- Values directly obtained from program inputs
- Ignore massive file content
 - Include corresponding loop trip-counts

Loop trip-counts

 Importance in programs and strong correlations with other behaviors

Behavior Affinity List

Header can predict body accurately.

CAPS @ William & Mary

Affinity List of mcf

Predictive Capability

Predictive models

- LMS (Least Mean Square)
- Regression Trees

Compute predictive capability

• 10-fold cross-validation

Seminal Behavior Based Predict

Num of seminal behaviors and prediction accuracy

Prog	interface values					earliness $\geq 90\%$						
	num	accuracy				num	accuracy					
		løop	call	edge	node	data		loop	call	edge	node	data
ammp	1	99.5	96.7	100	91.1	99.7	1	99.5	96.7	100	91.1	99.7
art	4	91.0	96.8	100	82.0	96.8	4	91.1	96.8	100	80.0	96.1
crafty	1	89.9	58.9	88.2	35.5	76.0	2	91.1	63.0	90.8	44.5	79.3
equake	1	98.0	100	100	96.3	99.3	1	98.0	100	100	96.3	99.3
gap	2	97.5	44.9	11.9	44.2	76.6	7	99.5	78.7	56.3	69.7	88.5
gcc	4	82.9	38.9	56.2	61.0	78.5	54	97.0	86.1	93.6	95.4	95.6
gzip	3	92.2	87.0	84.1	67.5	94.5	6	91.6	87.6	83.5	69.0	94.5
h264ref	3	99.8	99.8	98.7	98.8	99.8	4	99.8	99.7	97.0	97.8	99.7
lbm	3	99.8	90.1	100	100	100	3	99.8	90.1	100	100	100
mcf	5	87.3	87.7	100	92.2	97.8	10	92.2	91.0	100	89.5	97.5
mesa	1	100	100	99.5	12.2	100	1	100	100	99.5	12.2	100
milc	2	79.2	72.1	37.1	27.4	93.9	18	83.0	72.8	100	52.0	99.7
parser	1	90.2	85.4	73.8	75.9	87.6	2	91.8	88.0	79.2	78.0	90.8
vpr	3	93.3	95.1	60.4	81.9	94.6	9	95.2	95.5	64.0	82.2	95.8
Average	2.4	92.9	82.4	79.3	69.0	92.5	8.7	95.0	89.0	90.3	75.5	95.5

26

Outline

- A systematic measurement of correlations
- A framework for identification and modeling
- A demonstration of uses for optimizations
- Related work and conclusion

More Potential Uses

- Help JIT compilers make better decisions in managed environment
 - i.e. JVMs
- Boost performance through dynamic code version selection
 - for imperative languages such as C

Outline

- A systematic measurement of correlations
- A framework for identification and modeling
- A demonstration of uses for optimizations
- Related work and conclusion

Related Work

- Correlations between control flow signatures and hardware performance
 - [Sherwood+:ASPLOS'02, Annavaram+:Micro 04, etc.]
- Adaptive dynamic optimization
 - [Arnold+:OOPSLA'00, Chen+:PLDI'06,Lau+:PLDI'06, etc.]
- Exploiting inputs for optimization
 - [Wang+:PLDI'04, Mao+:CGO'09, Chen+:PLDI'10]

Conclusion

- Strong correlations exist among behaviors.
- Seminal behavior-based technique is promising.
- Significant potential for program optimizations.

Thanks!

Questions?

Kai Tian <u>ktian@cs.wm.edu</u>

CAPS @ William & Mary