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Accurate prediction of how programs would behave.

Program Behaviors

Prerequisite for Optimizations

(procedure calling freq, 

locality, loop trip counts...)
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Program Behavior Predictions
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Reactive approach

47% on J9 [Arnold+’ 05]

21% on JikesRVM [Mao+’ 09]
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Prior Solution: Input-Based Prediction

Predicted
behavior

OptimizeInput

Idea: Predicting behavior from inputs as program starts

Problem: Requiring manual characterization of inputs

[Mao+:CGO’09]



CAPS @ William & Mary 8

Our Solution

Exploit correlations among program components for 
proactive runtime prediction and optimization
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main(int argc, char * argv){
...
mesh_init (dataFile,mesh,refMesh);
genMesh (mesh,0,mesh->vN);
verify (mesh, refMesh);

}

Mesh * mesh_init
(char * initInfoF, Mesh* mesh, Mesh* refMesh)
{

// open vertices file, read # of vertices
FILE * fdata = fopen (initInfoF, "r");
fscanf (fdata, "%d, %\n", &vN);
mesh->vN = vN;
v = (vertex*) malloc (vN*sizeof(vertex));
// read vertices positions
for (i=0; i<vN; i++) {

fscanf (fdata, "%f %f\n", &v[i].x, &v[i].y);
...}

// sort vertices by x and y values
for (i=1; i< vN; i++){

for (j=vN-1; j>=i; j--){
...}

}
while (!feof(fd)){

... 
// read edges into refMesh for 

// later verification
}

}

// recursive mesh generation
void genMesh (Mesh *m, int left, int right){

if (right>3+left){
genMesh (m, left, (left+right)/2);
genMesh (m, (left+right)/2+1, right);
...}

...
}

void verify (Mesh *m, Mesh *mRef){
...

for (i=0, j=0; i< m->edgesN; i++){
...

}
}

Seminal Behaviors
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Questions to Answer

� Do such correlations exist commonly?

� How can they be automatically identified?

� Are they useful for program optimizations?
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Outline

• A systematic measurement of correlations

• A framework for identification and modeling

• A demonstration of uses for optimizations

• Related work and conclusion
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Behaviors under Study

• Loop trip-counts                             (by a modified GCC)

• Procedure calling frequencies        (by GNU gpof v2.19)

• Block access freq. (data profiles)   (by IBM XL C 10.1)

• Edge profiles and node profiles      (by IBM XL C 10.1)

Correlations to Measure
• Among same types of behaviors of different components

• E.g. trip-counts of two loops

• Among different types of behaviors of different components

• E.g. trip-counts  vs procedure calling freq. 
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Benchmarks [spec 2000 & 2006]

[Thanks to Amaral’s group for extra inputs]
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Calculation of Correlations

Sample standard deviation

The higher r is, the easier to predict one from the other.
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Uses for runtime 

behavior prediction

Strong correlations 

from loops to loops 

and to other 

behaviors
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Outline

• A systematic measurement of correlations

• A framework for identification and modeling

• A demonstration of uses for optimizations

• Related work and conclusion
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Two Goals

• Identify Seminal Behaviors

• Build predictive models

Target behavior value = f (values of seminal behaviors)
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Seminal Behaviors

• A small set of program behaviors

• Predictive capability

• Strongly correlate with target behaviors

• Earliness

• Values become known early in an execution



CAPS @ William & Mary 19

Identification of Sem Beh

Prog & 

inputs
Behavior

collection

value sets of 

candidates
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Candidate Seminal Behaviors

• Interface behaviors

• Values directly obtained from program inputs

• Ignore massive file content

• Include corresponding loop trip-counts

• Loop trip-counts

• Importance in programs and strong correlations with other 
behaviors
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Recognition of Sem Beh

Prog & 

inputs
Behavior

collection

value sets of 

candidates

Affinity list 

construction

Affinity lists
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Behavior Affinity List

header

body

Header can predict 

body accurately.
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Affinity List of mcf

• Incremental construction

• Start with interface behaviors

• Iteratively find headers from 
remaining based on their 

predictive capability
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Predictive Capability

• Predictive models

• LMS (Least Mean Square)

• Regression Trees

• Compute predictive capability

• 10-fold cross-validation
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Refine by predictive capabilitypredictive capability & earlinessearliness

Seminal Behaviors
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Seminal Behavior Based Predict

Num of seminal behaviors and prediction accuracy
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Outline

• A systematic measurement of correlations

• A framework for identification and modeling

• A demonstration of uses for optimizations

• Related work and conclusion
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pred prof real prof

Performance Improvement
(Baseline: highest static opt)

IBM 

Power5 

XL 11.1



CAPS @ William & Mary 30

More Potential Uses

� Help JIT compilers make better decisions in 
managed  environment 

� i.e. JVMs

� Boost performance through dynamic code version 
selection 

� for imperative languages such as C
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Outline

• A systematic measurement of correlations

• A framework for identification and modeling

• A demonstration of uses for optimizations

• Related work and conclusion
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Related Work

• Correlations between control flow signatures and 
hardware performance 

• [Sherwood+:ASPLOS’02, Annavaram+:Micro 04, etc.]

• Adaptive dynamic optimization

• [Arnold+:OOPSLA’00, Chen+:PLDI’06,Lau+:PLDI’06, etc.]

• Exploiting inputs for optimization

• [Wang+:PLDI’04, Mao+:CGO’09, Chen+:PLDI’10]
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Conclusion

� Strong correlations exist among behaviors.

� Seminal behavior-based technique is promising.

� Significant potential for program optimizations.



CAPS @ William & Mary 34

Thanks!

Questions?

Kai Tian

ktian@cs.wm.edu


