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Often, hidden bugs 
only appear when 
sensitized by the 
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Bugs escape Code/Branch  

coverage 

Attackers will seek out  

code paths not tested 



Path Test Complexity 

Path Explosion 

Path space is exponential with length 

Heavyweight test methods are slow 

Path coverage remains beyond reach 

Attackers seek to discover untested paths 

Necessitates new approach to achieve 

path testing 
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DCF ={                                         } <A, B, C, E> ,……, 



Value of the DCF 

Software Test Methodology: 

Focus on reliability 

Significant overlap in developer and user test 

Attacker Methodology: 

Input permutations to deviate slightly from the 

expected, typical user execution 

Dynamic Control Frontier: 

Intersection between heavily tested paths, and 

untested paths which are immediately reachable 
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Experimental Evaluation 

DynamoRIO-based dynamic path profiling 

Only instrument paths which are actively 

sampled 
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Benchmark Applications 

Popular, network-facing applications 

Application 

# Instructions 

Profiled 

# Potential  

Paths 

# DCF 

Paths 

SQLite 16,948,864,926 13,642,304 17,351 

OpenSSL 5,014,034,838 23,221,696 10,086 

tshark 684,000,546 38,467,136 178 

Python 656,068,272 12,175,712 35,026 

Tor 118,310,256 1,191,280 10,639 

InspIRCd 46,246,206 11,165,696 3,950  

Pidgin 4,762,914 6,833,360 3,641 
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DCF Coverage 
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DCF Effectiveness 

Challenged Schnauzer to find known 

security bugs 
Known bugs have precise code location 
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DCF analysis would have given opportunity 

to determine paths for these bugs before 

they were exploited 

106 Million+ Potential  

Length-n Paths 

14 Security Bugs 

80,000 DCF Paths 

{ Buffer Overflow, 

Integer Underflow, DoS, 

Format String, Heap 

Overflow } 



Conclusions & Future Directions 

Efficient, user-enabled DCF profiling can 
expand test for software security 

Identify code paths harboring bugs more likely 
to be exploited 

Before they are exploited 

Making software more secure 

Going Forward: 

More efficient user profiling 

Deployment of DCF for substantial application 

Integration with state-of-art automated test 
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Profiling Scalability 
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Path Length Scalability 
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Path Length : Vulnerability 
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Concurrent Hypotheses 
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DCF 

DCF(P) = {pi, pj,…, pm} 

pi = <bb1, bb2,…, bbn-1, bbn> 

| <bb1, bb2,…, bbn-1>  EX(P) 

 <bb1,…, bbn-1, bbn>  EX(P) 

EX(P) = {… all paths executed … } 
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