
Schnauzer: Scalable Profiling for

Likely Security Bug Sites

William Arthur, Biruk Mammo, Ricardo

Rodriguez, Todd Austin, Valeria Bertacco

CGO, Shenzhen, China

February 26, 2013

Goal of this work

2

MAKE SOFTWARE MORE SECURE

Goal of this work

2

MAKE SOFTWARE MORE SECURE
Leveraging Limited Test Resources

Goal of this work

2

MAKE SOFTWARE MORE SECURE
Leveraging Limited Test Resources

Goal of this work

2

MAKE SOFTWARE MORE SECURE
Leveraging Limited Test Resources

Importance of Path

Vast majority of security attacks are

enabled by software bugs

3

Importance of Path

Vast majority of security attacks are

enabled by software bugs

3

Often, hidden bugs only appear when
sensitized by the proper path

Importance of Path

Vast majority of security attacks are

enabled by software bugs

3

Often, hidden bugs
only appear when
sensitized by the
proper path

Data?

Load

Body?

Buf++

Injection

Activation

Importance of Path

Vast majority of security attacks are

enabled by software bugs

3

Often, hidden bugs
only appear when
sensitized by the
proper path

Data?

Load

Body?

Buf++

Injection

Activation

Bugs escape Code/Branch

coverage

Attackers will seek out

code paths not tested

Path Test Complexity

Path Explosion

Path space is exponential with length

Heavyweight test methods are slow

Path coverage remains beyond reach

Attackers seek to discover untested paths

Necessitates new approach to achieve

path testing

4

Path Test Complexity

4

Dynamic Control Frontier

Dynamic Control Frontier

Line of demarcation between dynamically

seen paths of execution and those which

are unseen

5

Dynamic Control Frontier

Line of demarcation between dynamically

seen paths of execution and those which

are unseen

Frontier of path space explored by an

application

5

Dynamic Control Frontier

Line of demarcation between dynamically

seen paths of execution and those which

are unseen

5

A

B

C

D E

Dynamic Control Frontier

Line of demarcation between dynamically

seen paths of execution and those which

are unseen

5

A

B

C

D E

<A, B, C, D>

Dynamic Control Frontier

Line of demarcation between dynamically

seen paths of execution and those which

are unseen

5

A

B

C

D E

<A, B, C, D> <A, B, C, E>

Dynamic Control Frontier

Line of demarcation between dynamically

seen paths of execution and those which

are unseen

5

A

B

C

D E

<A, B, C, D> <A, B, C, E>

DCF ={ } <A, B, C, E> ,……,

Value of the DCF

Software Test Methodology:

Focus on reliability

Significant overlap in developer and user test

Attacker Methodology:

Input permutations to deviate slightly from the

expected, typical user execution

Dynamic Control Frontier:

Intersection between heavily tested paths, and

untested paths which are immediately reachable

6

Value of Distributed Analysis

A single user:

Profiles an instance

7

Value of Distributed Analysis

A single user:

Profiles an instance

A non-trivial population of users:

Represents code paths not tested nor

executed with any frequency by any user

7

Value of Distributed Analysis

A single user:

Profiles an instance

A non-trivial population of users:

Represents code paths not tested nor

executed with any frequency by any user

7

Distributed DCF Profiling

User base profiles application via sampling

8

Users Developer

Analysis

Developer

Test

Distributed DCF Profiling

User base profiles application via sampling

8

Users Developer

Analysis

Developer

Test

DCF Paths

Distributed DCF Profiling

User base profiles application via sampling

8

Users Developer

Analysis

Developer

Test

DCF Paths High-Confidence
DCF Paths

Distributed DCF Profiling

User base profiles application via sampling

8

Users Developer

Analysis

Developer

Test

DCF Paths High-Confidence
DCF Paths

Test
Coverage

Distributed DCF Profiling

User base profiles application via sampling

8

Users Developer

Analysis

Developer

Test

DCF Paths High-Confidence
DCF Paths

Test
Coverage

Global
Path Filters

Experimental Evaluation

DynamoRIO-based dynamic path profiling

Only instrument paths which are actively

sampled

9

Experimental Evaluation

9

Data?

Load

Body?

Buf++

Path Tracking

Experimental Evaluation

9

Data?

Load

Body?

Buf++

Path Tracking

Experimental Evaluation

9

Data?

Load

Body?

Buf++

Path Tracking

DCF
Hypothesis

Experimental Evaluation

9

Data?

Load

Body?

Buf++

Path Tracking

DCF
Hypothesis

Benchmark Applications

Popular, network-facing applications

Application

Instructions

Profiled

Potential

Paths

DCF

Paths

SQLite 16,948,864,926 13,642,304 17,351

OpenSSL 5,014,034,838 23,221,696 10,086

tshark 684,000,546 38,467,136 178

Python 656,068,272 12,175,712 35,026

Tor 118,310,256 1,191,280 10,639

InspIRCd 46,246,206 11,165,696 3,950

Pidgin 4,762,914 6,833,360 3,641

10

Profiling Overheads

11

Profiling Overheads

11

DCF Coverage

12

DCF Effectiveness

Challenged Schnauzer to find known

security bugs
Known bugs have precise code location

13

DCF analysis would have given opportunity

to determine paths for these bugs before

they were exploited

106 Million+ Potential

Length-n Paths

14 Security Bugs

80,000 DCF Paths

{ Buffer Overflow,

Integer Underflow, DoS,

Format String, Heap

Overflow }

Conclusions & Future Directions

Efficient, user-enabled DCF profiling can
expand test for software security

Identify code paths harboring bugs more likely
to be exploited

Before they are exploited

Making software more secure

Going Forward:

More efficient user profiling

Deployment of DCF for substantial application

Integration with state-of-art automated test

14

Thank You

15

Supplemental Material

16

Profiling Scalability

17

0

4

8

12

16

20

0 2 4 6 8 10

N
u

m
b

e
r

o
f

U
n

iq
u

e
 P

a
th

s

(T
h

o
u

s
a

n
d

s
)

Instructions (Trillions)

DCF Paths -- SQLite Fuzz Test

Path Length Scalability

18

Path Length : Vulnerability

19

Concurrent Hypotheses

20

DCF

DCF(P) = {pi, pj,…, pm}

pi = <bb1, bb2,…, bbn-1, bbn>

| <bb1, bb2,…, bbn-1>  EX(P)

 <bb1,…, bbn-1, bbn>  EX(P)

EX(P) = {… all paths executed … }

21

