V,
N 4

A FAST AND LOW-OVERHEAD TECHNIQUE TO
SECURE PROGRAMS AGAINST INTEGER OVERFLOWS

RAPHAEL ERNANI RODRIGUES, VICTOR HUGO SPERLE CAMPOS,
FERNANDO MAGNO QUINTAO PEREIRA

Fernando@dcc wf 719 br

uuuuuuu

The Objective of the Paper

e
THE GOAL OF THIS WORK IS TO DESIGN AND IMPLEMENT A NEW

RANGE ANALYSIS ALGORITHM THAT WE SHALL USE TO ELIMINATE

INTEGER OVERFLOW CHECKS FROM C/C++ PROGRAMS.
CONSEQUENTLY, WE WILL INCREASE THE PERFORMANCE OF PROGRAMS
THAT ARE GUARDED AGAINST INTEGER OVERFLOWS.

 Due to time constraints, in this
presentation we will focus on our new
range analysis algorithm.

 We will also talk a little bit about the
important of securing programs
against integer overflows.

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

The Key Contribution

* A Range Analysis algorithm that improves on previous
works in several ways:

1. We handle comparisons between variables, e.g., x > vy,
without expensive relational lattices.

2. We have a very fast implementation, that relies on
techniques such as strongly connected components to
analyze half a million constraints in less than 10 seconds.

3. We use a live range splitting technique to improve the
precision of our algorithm.

 And we have shown how to use this algorithm to
eliminate some overflow checks in C programs.

s ¢
,\ Universidade Federal de Minas Gerais — Department of Computer Science — Programming Languages Laboratory EPGCC

B GIENCIA DA CO

A BRIEF OVERVIEW ABOUT INTEGER
OVERFLOWS

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC~-UFM

What are Integer Overflows

* In many programming languages, integers are made of a
finite number of bits.

 When we try to squeeze a value into one of these finite
numbers, and the value is larger than the capacity of that
type, then something funky may happen:

int main() {
char i = 118;
while (1 < 125)
i += 5;
printf("%8d",
}
printf("\n");

{

i);

123 -128
-93 -88
-53 -48
-13 -8
27 32
67 72
107 112
123= 0
128= 1
133="1

-123

1
0
0

-83
-43
-3
37
77
117

1
0
0

-118
-78
-38

2
42
82

122

1

-113
-73
-33

7
47
87

127

-108
-68
-28

12
52
92

-103
-63
-23

17
57
97

= 123
= —128
= —123

-98
-58
-18
22
62
102

char

char

char

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Benign Integer Overflows

Not every integer overflow is a bug. Programmers may
use this semantics to good purposes.

Integer overflows can be used to implement hash
function.

Integer overflows can be used to implement random
number generators.

In general, integer overflows are a simple and efficient
way to implement modular arithmetics:

unsigned char ¢ = 120, d = 118;
int 1 = ¢, J = d;
c *d= (1 * j) % 128

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Malign Integer Overflows

l void read matrix(int* data, char w, char h) ({

2 char buf size = w * h;

3 1f (buf size < BUF SIZE) {

4 int c0, cl;

5 int buf[BUF SIZE];

6 for (c0 = 0; c0 < h; cO0++) {

7 for (cl = 0; cl1 < w; cl++) {

8 int index = c0 * w + cl;

9 buf[index] = data[index];

10 ; This program has a
H } security bug. Can
12 process (buf) ; you identify it?
13}

[—
o
-

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Malign Integer Overflows

l void read matrix(int* data, char w, char h) ({

2 char buf size = w * h;

3 1f (buf size < BUF SIZE) ({ BUF SIZE = 120char
4 int c0, cl; strlen(data) = 132,
5 int buf[BUF SIZE];

) fFor (cO = 0; O < h; cO++) { buf_size = -124 .
7 for (cl = 0; cl < w; cl++) {

8 int index = c0 * w + cl;

9 buf[index] = data[index];

10 }

1 } W=0000O0T1T1SO0= 6,4,
12 process (buf); h=00010110-=22

char

*w=10000100 = -124

[—y

w

-
o

char

[—
o
-

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO

How do people handle integer overflows?*

 There are many ways to deal with integer overflows:

— We can use them conscientiously, taking benefit of its
semantics.

— We can do nothing about them.

— We can write programs that will never cause integer
overflows. This property can be proved statically.

— We can use programming languages that give
programmers resources to handle them dynamically.

— We can insert checks guarding arithmetic operations.

These checks, of course
slow down the program, but
not too much®: around 5%

®: Understanding integer overflow in C/C++, ICSE
®: RICH: Automatically Protecting Against Integer-Based Vulnerabilities, USENIX

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Who cares about 5%?

* Brumley et al*. have shown that securing a program
against integer overflows slows down runtime by no
more than 5% on the average.

e QOur range analysis technique brings this slow down to
under 2.5%.

— These gains have been verified over large benchmarks.

* These gains are cumulative with improvements in
hardware.

* Besides, our range analysis, which we humbly believe is
the nicest in the world today, can be used to enable many
other compiler optimizations.

®: RICH: Automatically Protecting Against Integer-Based Vulnerabilities, USENIX

A\

RANGE ANALYSIS IN ONE EXAMPLE

k2

k0O = 0
=¢ (k0, k2)
< 100)2
kl =0 k
i0 = 0
30 = k1
i =¢ (i0, 1i2)
j =¢ (30, j2)
(1 < 9)2
il =0 i
jl =0 3
iz =11 + 1
42 = 91 - 1
= k1l + 1

[]
7]

]

k1l

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Example

We will use a small example to show how our range analysis
works.

* This code has been adapted from the nested loop that we find
in quicksort.c, one of the Stanford benchmarks.

k =0
while k < 100:
1 =0
J =k
while 1 < 7:
' 1+ 1
J =3 -1
= k + 1

l:

k

Example
k: [0, 100]
k = 0
while k < 100: $——0__

1 =0
J =k
while 1 < 7:

We know that k is in the
interval [0, 100].

J =3 - 1 e Because it is initialized
k =k + 1 with O.

e |tisonly updated
through increments.

e |tis bounded by kin the
loop

Example
k: [0, 100]
k =0
Whlle k < 100°: j: [i, k]

7

We know that jis in the
while 1 < 7:

interval [i, k].

1 = 1 + 1 Why?
J =3 — 1 e Because it is initialized
k = k + 1 with k.

e |[tisonly updated
through decrements.

e |tislower bounded by i
in the loop

Example
k: [0, 100]
k = 0
while k < 100: « —
i =0 —j: [i, 99]
J =k
while 1 < j: But we know more about j:
i =1 4+ 1 it is upper bounded by 99.
j =3 -1
?
k = k + 1 Why:

e Because itis upper
bounded by k - 1.

e And we already know
that k £100

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Example

We know that i ranges on [0, j]:

e |tisinitialized with O.

e |tis upper bounded by j.

e [tis only updated through increments. k: [0, 100]

k =0
while k < 100: -
j_:O(/]:[|199]
j = k
while i < : —
1 =1+ 1 |:[OI.']
5= -1

k =k + 1

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Example

We use the limits of variables i and j before
we know their true ranges. This is the

concept that we call Futures.
k: [0, 100]

hile v
while k < 100: N\
1 = 0]:[|199]
J =k
while 1 < 7: : :
1 =1 + 1 I:[Oi]]
j=3 -1
k =k + 1

A future is like a promise: if we can find a
good estimation for its value, than we can
find a good fixed point solution to the
interval analysis.

THE RANGE ANALYSIS ALGORITHM

e-SSA Interprocedural C(.)r.wtext
Sensitiveness

Butlld_ t Extract
constrain Constraints
graph

Strongly Connected Components
Compute Remove control
SCCs topologlcally dep. edges

The micro algorithm:
for each SCC in topological order:

Growth L S Futun_a . Narrowi_ng
analysis Resolution analysis

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO

The Overall Structure of the Algorithm

< e-SSA >—><Interprocedural >—)<S

Build
constraint
graph

<

Context
ensitiveness

)

Extract

Constraints

Strongly Connected Components

Compute
SCCs

Sort
topologlcally

Remove control
dep. edges

|

The micro algorlthm:

Growth
analysis

for each SCC in topological order:

Future
Resolution

Narrowing
analysis

C

Interprocedural

)

v

< Context Sensitiveness)

v

Extract Constraints

v

Build Constraint Graph

v

C

Generate SCC’s

)

2

Growth Analysis

v

Future Resolution

v

Narrowing Analysis

&

Extended Static Single Assignment Form

* The first step to solve range analysis is to
convert the target program into e-SSA
form?.

* This intermediate representation let us
learn from conditional tests.

— Hence, it improves precision of the range
analysis.

* |tincreases the program size, but not too
much.

— Less than 10% on the average.

©: ABCD: eliminating array bounds checks on demand (PLDI'00)

C

Interprocedural

)

v

(Context Sensitiveness >

v

Extract Constraints

v

Build Constraint Graph

v

C

Generate SCC’s

)

v

Growth Analysis

v

Future Resolution

v

Narrowing Analysis

&

Extended Static Single Assignment Form

(a) SSA v
/(v > 0)? (Cytron et al, 1991)
u,=v+ _10 u =-

N

" :”(“0’ W To generate e-SSA form, we

N split the live ranges of
(b) 6-SSA . = variables that are used right

0
/ 0)’\ after conditional tests.

vy =vg [[-20, 0] v —\0 N [1, =]
u,=v; + 10

\ /

» = d(uy. uy)
At 3 = ¢(\'1, "2)
=1,

.=v, (Bodik et al, 2001)

PROGRAMA DE POS-GRADUAGAO

k =0

while k < 100: _—F tl

ke = k,N[100, +e]
i =0 orint X k., = k,N[->,99]
j — k £ lO = 0
: . . .=k
while i < 7J: Jo t
P -1+ l
j = j — 1 j-l - Cb(j-or 12)
Ajl = (b(jor 32)
k k 1 (i, < 3.2
We use special instructions, / £
called sigma-functions, to T A TG
split the live ranges of e } %lm[ft(',) j+1] .
variables that are tested in Je = mEeL 2

l2=lt+l

conditional branches. .
J, = J¢ - 1

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
oce-

Live Range Splitting Strategies

We have played with a different program representation (u-SSA), in which we

split live ranges after uses. We can only use it if an overflow aborts the
program.

If we have an operation such as a =b + ¢, and an overflow did not happened,
then we know that after a is defined, b must be less than ¢ + MAX_INT.

(original) ZV: '0)9 (e-SSA) vo= (u-SSA) v,="

(vy>0)? (vy>0)?
u—v+1/0 \u—' / \ V1:Vom[-00/0] \

=v, N [, 0 =v, N1, ’ =v, N[,
\ / u :;70+1[OOO | Vz VO -l u,=v,; +10 1:2:270 -l
0 1 1
*=u

\ / N4

¢(uo U, = ¢(uoa ul)
¢(V1a Vz) V3= ¢(V4: Vz)
= u2)

C) Inter-procedural Analysis

C '”tefpriced“ra') . Better precision vs slower runtime.

< Context Sensitiveness)

\1, main () :
0 100
Extract Constraints a = 0 l l
v b = 100 a 10000 b 100000
Build Constraint Graph foo(a, b) \/ \ /
v f00 (10000, 100000) ¢ ¢
< Generate SCC’s) l l
I
v foo(k, N): K N
Growth Analysis while k < N:
v . 1 =0;] =k constraint
Future Resolution while i < j graph of
v P the body
Narrowing Analysis . . of foo
J = J -
: A

() Context Sensitiveness

< Interprocedural) ® FunCﬁon |n||n|ng

v

(Context Sensitiveness) * Even better precision, even slower runtime

v

- . main () :
Extract Constraints main(): _ka(i_O; N, = 100
J foo (0, 100))
f 10000, 100000 while ik, < N.:
Build Constraint Graph 00 !) i, = 0; 3, = k,
while i <]
v foo (k, N): . ta ® Ja
Generate SCC’s : 1, =1, 1
while k < N: 5= 4 1
I — _
v 1=07 3=k K=k, + 1
Growth Analysis while 1 < 7j: = ° . —
| | J k, = 10000; N, = 100000
v 1 =1+ 1; while k_ < N_:
Future Resolution J =3 - ib = 0; jb = k,
J, k =%k +1 while i, < j.:
Narrowing Analysis ib - ib Co-
Jo = Jp ~ 1
é k, = k, + 1

C

Interprocedural

v

< Context Sensitiveness)

v

Extract Constraints

v

Build Constraint Graph

v

Extraction of Constraints

C

Generate SCC’s

2

Growth Analysis

v

Future Resolution

v

Narrowing Analysis

analysis.
k — O—>k1 = (b(kol kz)
(k, < 100)?
/ tl
k¢ - k,N[100, +=] K, = kN[, 99]
> print kg)
i, =0
Jo = ke
i, = ¢(j—o/ i,)
j1 = (D(jor]2)
(i, < jp°e
/ £
i, = 1,n[-=,ft(3,)-1]
I = 3,NIfE(E,), +=] Kk, =
i, =i, + 1
j2 = jt -1

Each constraint comes out of one instruction in
) the e-SSA form program. The solution to this
constraint system is the solution of our range

0

¢ (kyr Kky)

k, N [~oo,99]

0

kt

¢ (1, 1)

¢ (Jgr Jo)

i, o+ 1

Je — 1

k, + 1

J; N [ft(i,), +oo]
i, N [~oo, ft(5,)]

C

Interprocedural

)

v

< Context Sensitiveness)

v

Extract Constraints

v

Build Constraint Graph

v

C

Generate SCC’s

)

2

Growth Analysis

v

Future Resolution

v

Narrowing Analysis

&

Constraint Graph

The main data structure that we use in our
analysis is the constraint graph.

* This graph has a data vertex for each
variable in the program.

* The graph has also an operation vertex
for each constraint in the system.

* Dependence relations determine the
edges.

— If constraint C defines variable v, and uses
variable u, then we have two edges:
e u—>C
e C>u

| The Constraint Graph
 As an example, we shall
o k, = o(k,, k) show how to build the
Ry < l|3""3’ A constraint graph for our
k, = kN[, 99] example program.
i, = 0
jo = ki
|
j'l = ¢ (i.;/ i:)
—’jl = 'i (j_l j:)
(il < jl) ?
/ \
i, = 1,0[-=,ft(3,)-1]
J. = JN[f(1,), +==] ko= . 41
i, = 1, + 1 - N
J, = J: — 1

> ¢
PPGCCO

PROGRAMA DE FoswwafA
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

The Constraint Graph

kl I [-m>99]

We will show the parts of the
dependence graph that are related to
each variable in our example program.

This is the slice of the graph that deals
with the updating of the several versions
of variable k.

S
PPGCQ

PROGRAMA DE roswwa?
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

The Constraint Graph

jl - < jz
[ft(@), +0] ——=J ¢ —— 1

This is the slice of the graph that deals
with the updating of variable j.

S
PPGCCo

PROGRAMA DE rosww%
EM CIENCIA DA COMPUTAG,
DCC-UFMG

The Constraint Graph

S > P < K, < L - k.,
|
0 ——1; ki ——[,99] Jo«—=
p i, PP SO
|
1y [0, fit()-1] [ftG)), +0] ——TF ¢ —— -1

The slice of variable i.

S
PPGCC

PROGRAMA DE roswwa?
EM cﬁm: IA DA counm

The Constraint Graph

>k, > P < k, < +1 «— k.

|

0 ——1; ki ———[,99] Jo=—=
- I = ¢ < J2

1, [0, ﬁ(h)-ll [ﬁ(lz) +0] —Jy —> -1

These edges denote control
dependences. They will be necessary
during the resolution of futures.

)

C

Interprocedural

D

v

< Context Sensitiveness)

v

Extract Constraints

v

Build Constraint Graph

v

C

Generate SCC’s

)

2

Growth Analysis

v

Future Resolution

v

Narrowing Analysis

&

Strongly Connected Components

It is well-known in the literature that we
can improve the speed of the constraint
solver if we process strongly connected
components of our constraint graph in
topological order.

But, in our case, SCCs also improves the
precision of our results.

Strongly Connected Components
The next phases of our O T i
algorithm will be o ilk g k. ek,
performed once for each - el

SCCin the constraint
graph, in topological

order. L
-SCC4 _SCCH, SCC.6 SCC7

) —l—>l- i T - =V
SCC 8

1, @ 1, j 1 (r'z < J2

C

Interprocedural

)

v

C

Context Sensitiveness

v

Extract Constraints

v

Build Constraint Graph

v

C

Generate SCC’s

)

2

Growth Analysis

v

Future Resolution

v

Narrowing Analysis

&

The Three-Phases Approach

* In the next phase of our algorithm, we
iterate three steps, for each strongly
connected component.

— Widening: we find how each variable
grows (towards -o<, towards +oo, towards
both directions, or it remains stable)

— Future resolution: we replace futures by
concrete bounds.

— Narrowing: We recover part of the
impression of the widening phase by
considering the bounds in conditional
tests.

(ew) Widening
v * We need to know how each variable in
< Interprocedural)
1 the program grows.
(Context Sensitiveness) — For instance, if the variable is only
v updated via increment operations, then it
Extract Constraints grOWS towards +o00
T :
Build Constraint Graph We do not consider any bounds imposed
v by conditionals at this point.
< Generate SCC’s)
v
_ [0,0] —— s ¢ [0,0] ————— > ¢
Growth Analysis (i.) / /
0 !
¢ i (L, 1] i [i 1] i2[1,+00] i1[0,+oo]
Future Resolution 2L 1 l’ l
Jl _ [-o0, Tt(J,)-1] [-o0, ft(J)-1]
Narrowing Analysis l l

é Mo i +1 <1 [0, +0]

uuuuuuuuuuuuuuuuuuu

Interprocedural

)

v

(Context Sensitiveness)

v

Extract Constraints

v

Build Constraint Graph

v

C

Generate SCC’s

)

v

Growth Analysis

v

Future Resolution

v

Narrowing Analysis

&

Future Resolution

* In the next step, we must replace futures
by concrete bounds.

* If avariable's bound remained stable
during the widening step, then we know
that it can only shrink.

[0, 0] > ¢ b < [0, 99]
1,1, +o] 1[0, +o0] J 1[‘“ﬁ9] J o[, 98]
A ﬁ* A

[-o2. ft(iJ D-1] ft(/ J)V +oo]
+1 e__it[ol. +00] 7 t[—£. 99] —» —1

C -) Narrowing Analysis
v
C '”terpriced“ra' e Once we are done with future resolution, we
(< -) need to narrow the ranges of the variables.
ontext Sensitiveness
v * This narrowing is guided by the intersection
xtract Cj”“ra'”ts constraints that we have derived from
Build Constraint Graph Condlhonal tests.
v
—_— (D DO = [
< Generate SCC’s) [0, 0] ¢ 10, 99]
|
Growth Analysis j_:[l. +00] 1 1[0, +oo] :| l[—fﬁ. 99] :l :[_f 98]
v A A
Future Resolution l i
J -0, 98] [0, +0]
Narrowing Analysis l l

é +1 <———it[0. +oo] :| t[—ac. 99] ——— —1

nnnnnnnnnnnnnnnn

Interprocedural

)

v

(Context Sensitiveness)

v

Extract Constraints

v

Build Constraint Graph

v

C

Generate SCC’s

)

v

Growth Analysis

v

Future Resolution

v

Narrowing Analysis

&

Narrowing Analysis

less than 99.

resolution.

* We then propagate this restriction

We got this number, 99, out of future

In this example, we know that variable i is

throughout every part of the graph that is

influenced by .

[0,0] ———> &

7

1 ,[1, +o0] 1[0, +o]

[0, 0] ¢
,/ i

1,[1, +oo]

0 +o0]

'“ i

[-o0, 98]

l

+1 45———]._ t[O‘ +:t:]

h

!

-0, 98]

+[0, 98]

C

Interprocedural

)

v

< Context Sensitiveness)

v

Extract Constraints

v

Build Constraint Graph

v

C

Generate SCC’s

)

2

Growth Analysis

v

Future Resolution

v

Narrowing Analysis

&

Final Solution

+ N = (@]

N O

= O

NN N NN NN N NNNN
N

r,. 1))) /D D D/
=
e e e e o o e e I e e e L I S e S

OO Gl SR T e i el o

ot

~

~

~

o O B O O
~

|
= =S

~

~

ra. —mm))) /D D D/

O B O O O
~

~

s ¢
,\ Universidade Federal de Minas Gerais — Department of Computer Science — Programming Languages Laboratory EEPGCC

'EM GIENCIA DA COMPUTAG)

EXPERIMENTS

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Setup

* Implementation (in LLVM) publicly available

Benchmarks
— LLVM Test Suite: 400+ programs
— SPEC 2006

 Hardware
— x86 (2.4 GHZ Core 2 Quad, 3.5GB RAM)

* Average of 15 runs, taking out fastest and slowest

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO

1.E4+06
1.E+05

1.E+04

Linear Asymptotic Complexity in Practice

1.E402
1.E+01

1E+00

1E+06

1.E+05

1.E+04

0

—_ e -

- =

10

20 30

40 50 60 70

XVars -Time(ms)

1E+03 -nea e B

1.E402

20 30

X Vars

40 50 60 70

- Memory(bytes)

Runtime

Coefficient of linear
determination: 0,967

Memory Consumption

Coefficient of linear
determination: 0,994

Each point in each chart represents a

benchmark. We have only plotted the
100 largest benchmarks that we have.
It includes programs from SPEC 2006.

Precision

To check the precision of our algorithm, we have implemented a profiler that logs the
least and largest values that each integer variable receives throughout the execution of
the program. We can then compare these values with the values that we estimate
statically.

* The chart below shows the result of this comparison for the Stanford benchmarks.
They are a good test, because all the values are hardcoded in the programs.

1] * "1" means that we got
exact bounds.

* "n" means that we got
a bound that is less
than twice as large as
the real value.

|
H

* "n*n" means that we

& ¢ & > & @ are within a quadratic
\e?O« &@@ &@Q 0‘9@ QQ}(Q Q\\»& OQ?’Q .(\pok 'z}®® o$é <z,"’oK Q}%Qo . . d
R F ¥ & T approximation of the
N9 .
variable.

O1 On Mn*n Oimprecise

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
DCC-UFMG

Overflow Detection

Instrumentation that checks if an overflow has happened
after every ADD, SUB, MUL, TRUNC (also bit-casts) or
SHL (left shift).

Our implementation can print a warning or stop the
execution if it finds na overflow.

User can define custom overflow handlers.

We use range analysis to avoid creating some of these
overflow checks.

PROGRAMA DE POS-GRADUAGAO
EM CIENCIA DA COMPUTAGAO
e

A Typical Check

(e)
(a) entry:
%add = add nsw i32 %$x, %y

int foo(int x, int y) { $0 = icmp sge i32 %x, O
return x + y; %1 = icmp sge 132 %y, O
%2 = and il %0, %1
J %3 = icmp slt i32 %add, O

%4 = and 11 %2, %3

%5 = icmp slt 132 %x, O
(b) %6 = icmp slt i32 %y, O
$7 = and 11 %5, %o

%8 = icmp sge 132 %add, O

entry: %9 = and 11 %7, %8
%add = add nsw i32 %x, %y %10 = or il %4, %9
ret i32 %add br il %10, label %11, label %12

(©)

L = 01 +S 02 $11:
call void %handle overflow(...)
br label %12

(d)

(01 >0A02>0AZz<0) V v
(01<0/\02<0/\$>0) 512:

ret i32 %$add

PEGCC

Overflows in Practice
Benchmark #1 #11 #11/#1 #0
470.lbm 13,724 1,142 8.32% 0
433.milc 44,236 1,602 3.62% 11
444 namd 100,276 3,234 3.23% 12
447 dealll 1,381,408 36,157 2.62% 50
450.soplex 136,367 3,158 2.32% 13
464 .h264ref 271,627 13,846 5.10% 167
473 astar 19,243 857 4.45% 0
458.sjeng 54,051 2,504 4.63% 68
429.mcf 4,725 165 3,49% 8
471.omnetpp 203,201 1,972 0.97% 2
403.gcc 1,419,456 18,669 1.32% N/A
445.gobmk 308,475 14,129 4.58% 4
462.libquantum 16,297 028 5.69% 7
401.bzip2 38,831 2,158 5.56% 2
456.hmmer 114,136 4,001 3.51% 0
Total (Average) 275,070 6,968 3.96%

* "HI" LLVM bytecodes

in the original program.
"H#II" Number of

instructions that we
had to instrument.

"#11/#1" Ratio of
instrumented
instructions.

"#0": Number of
instructions in which
we have detected
overflows.

We could not compile
gcc, even without
dynamic overflow
detection, because of a
incompatible
ctype.h

uuuuuuuuuuuuuuuuuuu
EEEEEEEEEEEEE

The Benefits of Range Analysis

* "#II": Number of instructions that we had to instrument.

* "#E": Operations instrumented in the e-SSA form programs.

« "#U": Operations instrumented in the u-SSA form programs.

« "%(Il, E)" and "%(ll, U)": the higher, the better the results of the range analysis.

Benchmark #11 #E %11, E) #U %11, U)
Ibm 1,142 + 99.65% 4 99.65%
milc 1,602 1,070 33.21% 1,065 33.52%
namd 3,234 2,900 10.33% 2,900 10.33%
dealll 36,157 29,870 17.39% 28,779 20.41%
soplex 3,158 2,927 7.31% 2,897 8.26%
h264ref 13,846 11,342 18.38% 11,301 18.08%
astar 857 808 5.72% 806 5.95%
sjeng 2,504 2,354 5.99% 2,190 12.54%
mcf 165 164 0.61% 164 0.61%
omnetpp 1,972 1,313 33.42% 1,313 33.42%
gee 18,669 15,282 18.14% 15,110 19.06%
gobmk 14,129 12,563 11.08% 12,478 11.69%
libquantum 928 820 11.64% 817 11.96%
bzip2 2,158 1,966 8.90% 1,966 8.90%
hmmer 4,001 3,346 16.37% 3,304 17.42%
Total 104,522 86,688 85,135

ooooooooooooooooooo

Final Remarks

* This paper has advanced the state-of-the- g, worizonte:
art implementations of range analysis.

* Code publicly available. We already have
some users.

— Static range analysis.

— Different program representations, that
sparsify several data-flow problems.

— Dynamic instrumentation to secure
programs against integer overflows.

— Value range profiler.

