Profiling over Adaptive

Nelgle[s

Shashidhar Mysore, Banit Agrawal, Timothy Sherwood
Nisheeth Shrivastava, Subhash Suri

Department of Computer Science
University of California, Santa Barbara

4™ Aunual ACM/IEEE International Symposium on Code
Generation and Optimization (€G0), 27" March 2006,
Manhattan, NY

Presented by: SHASHI MYSORE
shashimc@cs.ucsb.eduv

Program Profiling: Understand system-workload
interactions - gather data, quantify, analyze, and
optimize

» At the core: We need to count events

* Basic blocks, load value distribution, load
instructions, load addresses, zero-value loads, narrow-
width operands, etc.

* Challenge:
— Huge complex programs
— Limited storage - tiny streaming profilers
— Runtime analysis - feasible hardware solutions

Let us consider an example of code profiling ...
shashiMmysore 2 UCSB

An example: Code Profiling

g, [Each basic block
executes some number

of times
Some are hot ——
Some are not I

Where are the hot regions?
How hot are they?

... And can we discover this
knowledge at run time?

Use counters ...

Shashi Mysore 3 UCSB

BB,

Naive Approach: Unlimited Counters

Counter | Code

Coverage of this counter

n

Shashi Mysore 4 UCSB
T

Naive Approach: Unlimited Counters

Counter { Code

N basic blocks — N counters y -
I

Each counter covers one Coverage of tiscounter
ShashiMmysore 5 UCSB

basic block

We get:
» High Coverage
 High Precision

Problem:
« Many programs have 800000
basic blocks or more!

but.. not all of them are important
to be quantified

BB
B

1
Bn

So let’s limit the number of counters ...

Naive Approach: Limited Counters

Code

. BB1
1

N basic blocks — K counters

Ck

pick K basic blocks and let
the K counters cover them

C1

We get:
 High Precision - For the hot spots
* Low Coverage - At the right spots

but what if did ...

BB

n

Shashi Mysore 6 UCSB

-

Naive Approach: Limited Counters

Code

N basic blocks — K counters BB,

pick K basic blocks and let
the K counters cover them

C1

BB

n

Shashi Mysore 7 LTE 5 H

e

Naive Approach: Limited Counters

N basic blocks — K counters Code

BB,
pick K basic blocks and let
the K counters cover them

We get:
» Low Coverage — and at unimportant regions
 High Precision — but is not as useful

Problem:

*We have zero information about hot c«
regions

*How do we know which region of the
code to cover with the K counters? .,

Distribute the basic blocks among the counters ... o8

Shashi Mysore 8 UCSB

Naive Approach: Uniform Ranges

Code

Each counter counts a range of basic blocks

K counters to cover the entire Cu
program

We get:

* High Coverage with K counters

* Low Precision

BB,

Problem:
» One counter associated with a huge
set of basic blocks

» Only average behavior — low precision

.. . . C1
* Precision important — especially
for hot regions

BB,

shashiMmysore 9 UCSB

Related Work

* Profile Gathering and analysis schemes
— [Anderson, et. Al., 97], [Arnold, et. Al., 01],
[Heil and Smith, '00], [Sastry, et. Al., '01], [Ball and Larus,
'96], [Calder, et. Al., 97], [Hirzel and Chilimbi, 01]
» Hardware assisted profiling and optimizations
— [Brooks, et. Al., ’99], [Conte, et, al., ‘94, '96]

[Dean, et, al., '97], [Narayanasamy, et., al.,’03], [Zhou, et. Al.,
'04], [Zilles and Sohi, '01], [Nagpurkar et. Al., '05], [Mousa,
et. Al, '05]

=High Coverage

»High precision

=Limited number of counters
=Covers any stream of profile data

*Low precision information on cold regions

Divide profile data hierarchically shashi Mysore 10 UCSE
Y i

|dedally: Best Ranges

We want: Code

* High Precision for hot regions 884

[]
 Lower precision information about H
colder regions
« High coverage by optimal use [_|
of a few counters (]
Challenge:

Discovering what to count and
With how much precision

BB

n

Shashi Mysore 11 UCSB

Challenges

|deal Profiler: Selects the best possible
ranges; decides the precision

Real Problem: Identifying the best possible
ranges to count before we already start
counting

|dentify ranges

Start counting

Or..

»
. 4

ShashiMysore 12 UCSB

Challenges

|deal Profiler: Selects the best possible
ranges; decides the precision

Real Problem: Identifying the best possible
ranges to count before we already start
counting

Start Counting |dentify ranges

What comes first?

e

»
L 4

Shashi Mysore 13 UCSB

Challenges

|deal Profiler: Selects the best possible
ranges; decides the precision

Real Problem: Identifying the best possible
ranges to count before we already start
counting

Range Adaptive Profiler solves exactly this problem
by dynamically identifying ranges as we count

ShashiMysore 14 UCSB
B

Our Approach: Adaptive Profiling

Initially: One counter - covers entire range Code -
1

When the counter is “hot” — split it

BB

n

Shashi Mysore 15 LTI': 5 H
e

Our Approach: Adaptive Profiling

Dynamically adapt counter coverage to suit the
execution frequency

Next: Whenever a node is “hot” — split it

n

Shashi Mysore 16 UCSB
B

Our Approach: Adaptive Profiling

Dynamically adapt counter coverage to suit the Code

: BB,
execution frec
As the program executes:
Allocate counters towards regions BB,
that are hotter shasnimysore 17 UCSB
i

Our Approach: Adaptive Profiling

At the end of the profiling phase - Code

BB,

We get:

« High precision for hot regions
BB

n

Shashi Mysore 18 UCSB
B

Our Approach: Adaptive Profiling

At the end of the profiling phase - Code

/-)

We get:
» Lower precision information about
colder regions BB,
Shashi Mysore 19 UESB
i

Our Approach: Adaptive Profiling

Code

At the end of the profiling phase - BB

e

We get:
* High coverage by optimally using

BB
a few counters

n

Shashi Mysore 20 UCSB
B

Range Adapftive Profiling

Advantages:

» A streaming (one-pass) technique to hierarchically
classify events

* Fixed number of counters — O(log(R) * 1/E)
* Precision adaptive to hot regions
» Guaranteed error bounds

Any stream of profile data that can be divided hierarchically:
» Code profiling

Values profiling

Load address profiling

Zero-value load profiling

Narrow-width operand profiling

Shashi Mysore 21 UCSB

— Splits
— Merges
« Making it efficient
— Batching merges
— Branching Factor
* RAP implementation

— Results — Quantify error and memory
— Hardware and Software

* Conclusions

ShashiMysore 22 UCSB

Adapftive Profiling - Splits

BB,

BB,

Shashi Mysore 23 LTI'.: 5 H
e

Adapftive Profiling - Splits

Code

BB,

BB,

Shashi Mysore 24 UCSB
B

Adapftive Profiling - Splits

Code
BB,

BB

n

Shashi Mysore 25 UCSB
e

Adapftive Profiling - Splits

Csplit) CopliD
e

Code

BB,

... when to split?

» Adaptive to stream size

* Relative importance crucial
* Bounds error in counting
 SplitThreshold = E.N/(log(R))

BB

n

Shashi Mysore 26 UCSB
B

Adapftive Profiling - Merges

Adaptive Precision Profiling accomplished! Code .

Beware - temporary
hot regions!

For example — program initialization phase..s.hoshi wsore 27 UCSB

Adapftive Profiling - Splits

Note: Something that is hot now — Code
may become cold later

BB

n

Adapting to initialization phase ...
Shashi Mysore 28 UCSB
e

Adapftive Profiling - Splits

Note: Something that is hot now — Code
may become cold later

BB

n

Adapting to initialization phase ...
Shashi Mysore 29 UESH
i

Adapftive Profiling - Splits

Note: Something that is hot now — Code
may become cold later

Adapting to initialization phase ... B8

Shashi Mysore 30 UCSB
B

Adapftive Profiling - Splits

Note: Something that is hot now — Code
may become cold later

Adapting to initialization phase ...
Shashi Mysore 31 UI:SB

Adapftive Profiling - Splits

End of initialization phase — Code

precisely captured temporary hot regions BB

Program continues to execute —
overall hot region shifts ...

BB,

Shashi Mysore 32 UCSB
B

Adapftive Profiling - Splits

Code

Program continues to execute —
overall hot region shifts

Range adaptive profiler adapts
to the new hot region

Shashi Mysore 33

BB,

No longer hot

BB

n

UCSB
e

Adapftive Profiling - Merges

Uses lot more counters than

needed!
s

S

Problem:
Changing hot region -
undo unnecessary adaptation

Merge ‘non-hot counters’ ...

Code

BB,

y
_//

3

Shashi Mysore 34

BB

n

UCSB
-

Adapftive Profiling - Merges

RAP solution: Code .
* Recursive Merges 1
* Collapse counters to
parents

merge

We never throw away profile BB,
information, we only merge Shoshimysore 35 UCSB
Adapftive Profiling - Merges

RAP solution: Code

. BB
* Recursive Merges 1

* Collapse counters to
parents

We never throw away profile

information, we only merge shasnimysore 36 UCSB
e

Adapftive Profiling - Merges

RAP solution: Code

. BB,
» Recursive Merges
* Collapse counters to
parents

We never throw away profile BB,
information, we only merge Shesnimysore 37 UCSB
Adapftive Profiling - Merges

RAP solution: Code

. BB
* Recursive Merges 1

* Collapse counters to
parents

We never throw away profile
information, we only merge

BB,

Shashi Mysore 38 UCSB
B

Adapftive Profiling - Merges

RAP solution: Code

. BB,
» Recursive Merges
* Collapse counters to
parents

We never throw away profile

BB,
information, we only merge shasnivore 39 UCSB
i

Adapftive Profiling - Merges
RAP solution: Code

. BB
* Recursive Merges 1

* Collapse counters to
parents

BB,

Shashi Mysore 40 UCSB
B

Range Adaptive Profiling

Advantages

* Precision dynamically adaptive to hot regions
» Guaranteed error bounds

* Optimal usage of a few counters

* Plus -

 Independent of the stream size
 Independent of the stream order

Shashi Mysore 41 UCSB

» Making it efficient
— Batching merges
— Branching Factor
* RAP implementation

— Results — Quantify error and memory
— Hardware and Software

* Conclusions

shashiMysore 42 UCSB

Batched Merges

100

Number of Counters

RAP tree does not grow faster than logarithmic rate

When do we initiate a merge cycle:
* Periodic merging
« Exponentially increasing periods

ShashiMysore 43 UCSB
e

Branching Factor

L]

L]

branching factor 2 4 3

«—

—
Less memory More memory

Faster Convergence

» We show that optimal branching factor is four

Shashi Mysore 44 UCSB
B

* RAP implementation
— Results — Quantify error and memory
— Hardware and Software

* Conclusions

Shashi Mysore 45 UCSB
e

« Range adaptive profiler
— Online technique
— Does not have ideal knowledge — counts everything
— Error introduced by not splitting early enough

|
N
K\
]

Percent Error

o - X 'Y 4 L e
§ & AR 0@0 £)
< S N\

(SPEC Benchﬁ{arkD
/
/

@ge percent error less th@

ShashiMysore 46 UCSB
B

High accuracy — but at what cost?

2\

7

/§ 300

2 oo

% 50 — —

s 00 1 _’:

2 |s0 { 7

g 0 T T T T

—
o & & & R & &
g 4 & & ¢ & @ O

Mg ® szr) 04@*
< SPEC Benchmarks_>

« On an average - 150 counters provides 99% accurate
information on code profiles

We show more results in the paper

Shashi Mysore 47 UCSB

Software implementation

» Simple set of APls
— Offline and online profiling
— rap_init
—rap _add points — builds the RAP tree,
takes care of splits and merges too.

—rap_finalize
« Webpage
— www.cs.ucsb.edu/~arch/rap

Extremely high throughput profile data analysis ...

ShashiMysore 48 UCSB

Hardware Profiling Engine

NN
Stage 0: age 2. Stage\3:
Event Buffer fge MatcRing Loggest Matdh Couynter Mainienance
N ounter Indices
Event Name]
P address, memo -1
PC, value, efc...) 5
3 |H
1 3
< ™ [s
Z ®
= [| <
Quantity | §
o
| S
_~ =
"
N4

Shashi Mysore 49 UCSB

Conclusion

« Range Adaptive Profiling
— Summarizes high bandwidth profile data
— Fully streaming scheme
— Bounded memory and error
— General purpose — high applicability

— Multi-dimensional Profiling

ShashiMysore 50 UCSB

Future Work: Multidimensional Profiling

Code-mem

Edges

Code-val

Val-mem

Thank You

Profiling over Adaptive Ranges -
http://www.cs.ucsb.edu/~arch/rap
http://www.cs.ucsb.edu/~shashimc

shashiMysore 52 UCSB

