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Motivation

Program Profiling: Understand system-workload 

interactions - gather data, quantify, analyze, and 

optimize

Let us consider an example of code profiling …

• At the core: We need to count events

• Basic blocks, load value distribution, load 
instructions, load addresses, zero-value loads, narrow-

width operands, etc. 

• Challenge:
– Huge complex programs

– Limited storage - tiny streaming profilers

– Runtime analysis - feasible hardware solutions
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BB1

BBn

push   %ebp

mov    %esp,%ebp

sub    $0x38,%esp

and    $0xfffffff0,%esp

mov    $0x0,%eax

sub    %eax,%esp

sub    $0x8,%esp

push   $0x28

push   $0x8048468

call   80482b0 add    

push   %ebp

mov    %esp,%ebp

sub    $0x38,%esp

and    $0xfffffff0,%esp

mov    $0x0,%eax

sub    %eax,%esp

sub    $0x8,%esp

push   $0x28

push   $0x8048468

call   80482b0 

add    $0x10,%esp

push   %ebp

mov    %esp,%ebp

sub    $0x38,%esp

and    $0xfffffff0,%esp

mov    $0x0,%eax

sub    %eax,%esp

sub    $0x8,%esp

push   $0x28

push   $0x8048468

call   80482b0 

add    $0x10,%esp

mov    %esp,%ebp

sub    $0x38,%esp

and    $0xfffffff0,%esp

mov    $0x0,%eax

sub    %eax,%esp

sub    $0x8,%esp

push   $0x28

push   $0x8048468

push   $0x28

push   $0x8048468

mov    %esp,%ebp

sub    $0x38,%esp

sub    $0x8,%esp

push   $0x28

push   $0x8048468

mov    %esp,%ebp

sub    $0x8,%esp

push   $0x28

push   $0x8048468

An example: Code Profiling

Code Each basic block 

executes some number 

of times

Use counters …

Where are the hot regions?

Some are hot 

Some are not

How hot are they?

… And can we discover this 

knowledge at run time?
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Naïve Approach: Unlimited Counters

Code
BB1

BBn

Counter

Coverage of this counter



Shashi Mysore 5

Naïve Approach: Unlimited Counters

Code
BB1

BBn

We get:

• High Coverage

• High Precision

N basic blocks – N counters

Each counter covers one

basic block

Problem: 

• Many programs have 800000 

basic blocks or more!

Counter

Coverage of this counter

So let’s limit the number of counters …

but.. not all of them are important 

to be quantified
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C1

CK

Naïve Approach: Limited Counters
Code

BB1

BBn

We get:

• High Precision - For the hot spots

• Low Coverage  - At the right spots

N basic blocks – K counters

pick K basic blocks and let

the K counters cover them

but what if did …
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C1

CK

Naïve Approach: Limited Counters
Code

BB1

BBn

N basic blocks – K counters

pick K basic blocks and let

the K counters cover them
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C1

CK

Naïve Approach: Limited Counters
Code

BB1

BBn

We get:

• Low Coverage – and at unimportant regions

• High Precision – but is not as useful

N basic blocks – K counters

pick K basic blocks and let

the K counters cover them

Problem: 

•We have zero information about hot 

regions

•How do we know which region of the 

code to cover with the K counters?

Distribute the basic blocks among the counters …
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Naïve Approach: Uniform Ranges
Code

BB1

BBn

We get:

• High Coverage with K counters

• Low Precision

Problem:

• One counter associated with a huge 

set of basic blocks

• Only average behavior – low precision

• Precision important – especially 

for hot regions

C1

CK
K counters to cover the entire

program

Each counter counts a range of basic blocks
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Related Work
• Profile Gathering and analysis schemes

– [Anderson, et. Al., ’97], [Arnold, et. Al., ’01], 

[Heil and Smith, ’00], [Sastry, et. Al., ’01], [Ball and Larus, 
’96], [Calder, et. Al., 97], [Hirzel and Chilimbi, ’01]

• Hardware assisted profiling and optimizations 
– [Brooks, et. Al., ’99], [Conte, et, al., ’94, ’96]

[Dean, et, al., ’97], [Narayanasamy, et., al.,’03], [Zhou, et. Al., 
’04], [Zilles and Sohi, ’01], [Nagpurkar et. Al., ’05], [Mousa, 
et. Al, ’05]

�High Coverage

�High precision

�Limited number of counters

�Covers any stream of profile data

•Low precision information on cold regions

•Divide profile data hierarchically
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Ideally: Best Ranges
Code

BB1

BBn

We want:

• High Precision for hot regions

Challenge: 

Discovering what to count and

With how much precision

• Lower precision information about 

colder regions

• High coverage by optimal use

of a few counters
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Challenges

Ideal Profiler: Selects the best possible 

ranges; decides the precision

Real Problem: Identifying the best possible 

ranges to count before we already start 

counting

Start countingIdentify ranges

Or..
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Challenges

Ideal Profiler: Selects the best possible 

ranges; decides the precision

Real Problem: Identifying the best possible 

ranges to count before we already start 

counting

Start Counting
What comes first?

Identify ranges
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Challenges

Ideal Profiler: Selects the best possible 

ranges; decides the precision

Real Problem: Identifying the best possible 

ranges to count before we already start 

counting

Range Adaptive Profiler solves exactly this problem 

by dynamically identifying ranges as we count
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Our Approach: Adaptive Profiling
Code

BB1

BBn

Initially: One counter - covers entire range

When the counter is “hot” – split it

split
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Our Approach: Adaptive Profiling
Code

BB1

BBnNext: Whenever a node is “hot” – split it

Dynamically adapt counter coverage to suit the 

execution frequency
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Our Approach: Adaptive Profiling
Code

BB1

BBn

As the program executes:

Allocate counters towards regions 

that are hotter

Dynamically adapt counter coverage to suit the 

execution frequencysplit

Shashi Mysore 18

Our Approach: Adaptive Profiling
Code

BB1

BBn

At the end of the profiling phase -

We get:

• High precision for hot regions
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Our Approach: Adaptive Profiling
Code

BB1

BBn

At the end of the profiling phase -

We get:

• Lower precision information about 

colder regions
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Our Approach: Adaptive Profiling
Code

BB1

BBn

At the end of the profiling phase -

We get:

• High coverage by optimally using

a few counters
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Range Adaptive Profiling

Advantages:

• A streaming (one-pass) technique to hierarchically 
classify events

• Fixed number of counters – O(log(R) * 1/E)

• Precision adaptive to hot regions

• Guaranteed error bounds

Any stream of profile data that can be divided hierarchically:

• Code profiling

• Values profiling

• Load address profiling 

• Zero-value load profiling

• Narrow-width operand profiling
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• Program Profiling

– An example: Code profiles

– Related work

• Range Adaptive Profiling

– Advantages and Applications

– Splits

– Merges

• Making it efficient

– Batching merges

– Branching Factor

• RAP implementation

– Results – Quantify error and memory

– Hardware and Software

• Conclusions

Outline
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Adaptive Profiling - Splits
Code

BB1

BBn

split
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Adaptive Profiling - Splits
Code

BB1

BBn
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Adaptive Profiling - Splits
Code

BB1

BBn

split
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Adaptive Profiling - Splits
Code

BB1

BBn

split

split

split

• Adaptive to stream size

• Relative importance  crucial 

• Bounds error in counting

• SplitThreshold = E.N/(log(R))

… when to split?
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Adaptive Profiling - Merges
Code

BB1

BBn

Beware - temporary 

hot regions!

For example – program initialization phase…

Adaptive Precision Profiling accomplished!
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Adaptive Profiling - Splits

Note: Something that is hot now –

may become cold later

Adapting to initialization phase …

Code
BB1

BBn
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Adaptive Profiling - Splits

Adapting to initialization phase …

Note: Something that is hot now –

may become cold later

Code
BB1

BBn

Shashi Mysore 30

Adaptive Profiling - Splits

Adapting to initialization phase …

Note: Something that is hot now –

may become cold later

Code
BB1

BBn



Shashi Mysore 31

Adaptive Profiling - Splits

Note: Something that is hot now –

may become cold later

Adapting to initialization phase …

Code
BB1

BBn
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Adaptive Profiling - Splits
End of initialization phase –

precisely captured temporary hot regions

Program continues to execute –

overall hot region shifts …

Code
BB1

BBn
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Adaptive Profiling - Splits
Code

BB1

BBnRange adaptive profiler adapts

to the new hot region

}
No longer hot

Program continues to execute –

overall hot region shifts
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Adaptive Profiling - Merges
Code

BB1

BBn

Uses lot more counters than 

needed!

Merge ‘non-hot counters’ …

Problem: 

Changing hot region -

undo unnecessary adaptation
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Adaptive Profiling - Merges
Code

BB1

BBn

RAP solution: 

• Recursive Merges

• Collapse counters to 

parents

merge

We never throw away profile 

information, we only merge
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Adaptive Profiling - Merges
Code

BB1

BBn

merge

RAP solution: 

• Recursive Merges

• Collapse counters to 

parents

We never throw away profile 

information, we only merge
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Adaptive Profiling - Merges
Code

BB1

BBn

merge

RAP solution: 

• Recursive Merges

• Collapse counters to 

parents

We never throw away profile 

information, we only merge
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Adaptive Profiling - Merges
Code

BB1

BBn

merge

RAP solution: 

• Recursive Merges

• Collapse counters to 

parents

We never throw away profile 

information, we only merge
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Adaptive Profiling - Merges
Code

BB1

BBn

merge

RAP solution: 

• Recursive Merges

• Collapse counters to 

parents

We never throw away profile 

information, we only merge
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Adaptive Profiling - Merges
Code

BB1

BBn

RAP solution: 

• Recursive Merges

• Collapse counters to 

parents
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Range Adaptive Profiling

Advantages

• Precision dynamically adaptive to hot regions

• Guaranteed error bounds

• Optimal usage of a few counters

• Plus -

• Independent of the stream size

• Independent of the stream order
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• Program Profiling

– An example: Code profiles

– Related work

• Range Adaptive Profiling

– Advantages and Applications

– Splits

– Merges

• Making it efficient

– Batching merges

– Branching Factor

• RAP implementation

– Results – Quantify error and memory

– Hardware and Software

• Conclusions

Outline
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Batched Merges

When do we initiate a merge cycle:

• Periodic merging

• Exponentially increasing periods

RAP tree does not grow faster than logarithmic rate

Merge cycleMerge cycleMerge cycleMerge cycleMerge cycle Merge cycle
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Branching Factor

• We show that optimal branching factor is four

Less memory More memory

Faster Convergence

branching factor  2 4 8
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• Program Profiling

– An example: Code profiles

– Related work

• Range Adaptive Profiling

– Advantages and Applications

– Splits

– Merges

• Making it efficient

– Batching merges

– Branching Factor

• RAP implementation

– Results – Quantify error and memory

– Hardware and Software

• Conclusions

Outline
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Results

• Range adaptive profiler
– Online technique

– Does not have ideal knowledge – counts everything

– Error introduced by not splitting early enough
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Average percent error less than 2%
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Results
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• On an average - 150 counters provides 99% accurate 
information on code profiles 

High accuracy – but at what cost?

We show more results in the paper
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Software implementation

• Simple set of APIs

– Offline and online profiling

– rap_init

– rap_add_points – builds the RAP tree, 

takes care of splits and merges too.

– rap_finalize

• Webpage

– www.cs.ucsb.edu/~arch/rap

Extremely high throughput profile data analysis …
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Hardware Profiling Engine

Stage 0:

Event Buffer

Event Name

(IP address, memory,

PC, value, etc…)

Quantity

0 0 *

0 0 0 1 *

0 0 0 0 *

0 0 1 0 *

0 0 0 0 0 0 *

0 0 1 1 *

0 0 0 0 1 0 *

0 0 0 0 0 0 *

0 0 0 0 1 1 *

0 0 0 0 0 0 1 *

. . . 

Stage 1:

Range Matching

TCAM Cells

Stage 2:

Longest Match

Stage 3:

Counter Maintenance

Counter Indices
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Control

Block

positive?

Stage 4:

Split Handling
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Conclusion

• Range Adaptive Profiling

– Summarizes high bandwidth profile data

– Fully streaming scheme

– Bounded memory and error 

– General purpose – high applicability

– Multi-dimensional Profiling
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Future Work

• Multi-Dimensional Profiling

Future Work:  Multidimensional Profiling

Edges

Code-mem

Code-val

Val-mem
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Thank You

Profiling over Adaptive Ranges -

http://www.cs.ucsb.edu/~arch/rap

http://www.cs.ucsb.edu/~shashimc


